skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yang, Haici"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Speech enhancement tasks have seen significant improvements with the advance of deep learning technology, but with the cost of increased computational complexity. In this study, we propose an adaptive boosting approach to learning locality sensitive hash codes, which represent audio spectra efficiently. We use the learned hash codes for single-channel speech denoising tasks as an alternative to a complex machine learning model, particularly to address the resource-constrained environments. Our adaptive boosting algorithm learns simple logistic regressors as the weak learners. Once trained, their binary classification results transform each spectrum of test noisy speech into a bit string. Simple bitwise operations calculate Hamming distance to find the K-nearest matching frames in the dictionary of training noisy speech spectra, whose associated ideal binary masks are averaged to estimate the denoising mask for that test mixture. Our proposed learning algorithm differs from AdaBoost in the sense that the projections are trained to minimize the distances between the self-similarity matrix of the hash codes and that of the original spectra, rather than the misclassification rate. We evaluate our discriminative hash codes on the TIMIT corpus with various noise types, and show comparative performance to deep learning methods in terms of denoising performance and complexity. 
    more » « less
  2. Bouffanais, Roland (Ed.)
    Understanding the emergence, co-evolution, and convergence of science and technology (S&T) areas offers competitive intelligence for researchers, managers, policy makers, and others. This paper presents new funding, publication, and scholarly network metrics and visualizations that were validated via expert surveys. The metrics and visualizations exemplify the emergence and convergence of three areas of strategic interest: artificial intelligence (AI), robotics, and internet of things (IoT) over the last 20 years (1998-2017). For 32,716 publications and 4,497 NSF awards, we identify their topical coverage (using the UCSD map of science), evolving co-author networks, and increasing convergence. The results support data-driven decision making when setting proper research and development (R&D) priorities; developing future S&T investment strategies; or performing effective research program assessment. 
    more » « less