skip to main content

Search for: All records

Creators/Authors contains: "Yang, J. Q."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In‐stream wood structures, such as single logs, river steps, and debris dams, are known to drive hyporheic flow, defined as the flow that goes into the subsurface region and then back to the free‐flowing surface water. The hyporheic flow plays an important role in regulating water quality and biogeochemical cycles in rivers. Here, we investigated the impact of a channel‐spanning porous log jam, representing piles of wood logs, on hyporheic flow through a combination of direct visualization and theories. Specifically, we developed a method using refractive index‐matched sediment to directly visualize the hyporheic flow around and below a porous log jam, formed by piles of cylindrical rods, in a laboratory flume. We tracked the velocity of a fluorescent dye moving through the transparent sediment underneath the log jam. In addition, we measured the water surface profile and the spatially varying flow velocity near the log jam. Our results show that the normalized log jam‐induced hyporheic flux remained smaller than 10% at Froude numbers () below 0.06 and increased by a factor of five with increasing at . We combined the mass and momentum conservation equations of surface flow with Darcy's equation to explain the dependency of the log jam‐induced hyporheic flux on . Further, we observed that at , the water surface dropped noticeably and the turbulent kinetic energy increased immediately on the downstream side of the log jam. These findings will facilitate future quantification of hyporheic flow caused by channel‐spanning porous log jams.

    more » « less
  2. Abstract

    The impacts of aquatic vegetation on bed load transport rate and bedform characteristics were quantified using flume measurements with model emergent vegetation. First, a model for predicting the turbulent kinetic energy,kt, in vegetated channels from channel average velocityUand vegetation volume fractionϕwas validated for mobile sediment beds. Second, using data from several studies, the predictedktwas shown to be a good predictor of bed load transport rate,Qs, allowingQsto be predicted fromUandϕfor vegetated channels. The control ofQsbyktwas explained by statistics of individual grain motion recorded by a camera, which showed that the number of sediment grains in motion per bed area was correlated withkt. Third, ripples were observed and characterized in channels with and without model vegetation. For low vegetation solid volume fraction (ϕ ≤ 0.012), the ripple wavelength was constrained by stem spacing. However, at higher vegetation solid volume fraction (ϕ=0.025), distinct ripples were not observed, suggesting a transition to sheet flow, which is sediment transport over a plane bed without the formation of bedforms. The fraction of the bed load flux carried by migrating ripples decreased with increasingϕ, again suggesting that vegetation facilitated the formation of sheet flow.

    more » « less