skip to main content


Search for: All records

Creators/Authors contains: "Yang, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2024
  2. Free, publicly-accessible full text available July 1, 2024
  3. Free, publicly-accessible full text available July 1, 2024
  4. Free, publicly-accessible full text available July 1, 2024
  5. Free, publicly-accessible full text available June 1, 2024
  6. Free, publicly-accessible full text available June 1, 2024
  7. Memristive devices can offer dynamic behaviour, analogue programmability, and scaling and integration capabilities. As a result, they are of potential use in the development of information processing and storage devices for both conventional and unconventional computing paradigms. Their memristive switching processes originate mainly from the modulation of the number and position of structural defects or compositional impurities—what are commonly referred to as imperfections. While the underlying mechanisms and potential applications of memristors based on traditional bulk materials have been extensively studied, memristors based on van der Waals materials have only been considered more recently. Here we examine imperfection-enabled memristive switching in van der Waals materials. We explore how imperfections— together with the inherent physicochemical properties of the van der Waals materials—create different switching mechanisms, and thus provide a range of opportunities to engineer switching behaviour in memristive devices. We also discuss the challenges involved in terms of material selection, mechanism investigation and switching uniformity control, and consider the potential of van der Waals memristors in system-level implementations of efficient computing technologies. 
    more » « less
    Free, publicly-accessible full text available July 17, 2024
  8. Free, publicly-accessible full text available April 1, 2024
  9. Free, publicly-accessible full text available May 1, 2024
  10. Storm surge and evacuation traffic under the observed track of Hurricane Michael (2018) showed clear accessibility and evacuation challenges for Panama City, Florida although the city was not hit directly. Since a possible Hurricane Michael track within National Hurricane Center (NHC)'s forecasted hurricane cone was Panama City, this paper tries to answer the following questions: What if Hurricane Michael hit Panama City directly? How would the special needs populations and their accessibility to Special Needs Shelters (SpNS) be impacted, and what could have been done to alleviate this impact? A previously validated storm surge model was used to predict storm surge inundations under this different hurricane track. Based on the impact of these coastal inundations, a GIS-based optimization methodology was developed to evaluate the accessibility and siting of special needs shelters. Results indicate that if Hurricane Michael had shifted to Panama City in 2018, most of the coastal region of Panama City would have been inundated, compelling residents to evacuate. The possible landfall of Michael in this simulation would also lead to a maximum storm surge of 5 to 6 m on the coast, which is above FEMA's 100-year flood elevation. In addition, the only evacuation route out of Panama City area, when the bridges with their access roads were flooded, was US 231. This would have been life-threatening since there is only one SpNS in the north of the city accessible by this roadway. The proposed analysis studies the accessibility of this SpNS shelter and provides a reasonable approach for SpNS shelter siting or repurposing regular shelters for this purpose based on the hypothesized travel time most likely to be experienced on roadway networks based on the impact of Hurricane Michael. Emergency plans can be updated by the results of this optimization model, which can locate additional sites or shelter locations while minimizing the travel costs and integrating the impact of storm surge modeling and transportation accessibility analysis. 
    more » « less
    Free, publicly-accessible full text available January 6, 2024