Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available September 1, 2026
- 
            This paper studies learning-augmented decentralized online convex optimization in a networked multi-agent system, a challenging setting that has remained under-explored. We first consider a linear learning-augmented decentralized online algorithm (LADO-Lin) that combines a machine learning (ML) policy with a baseline expert policy in a linear manner. We show that, while LADO-Lin can exploit the potential of ML predictions to improve the average cost performance, it cannot have guaranteed worst-case performance. To address this limitation, we propose a novel online algorithm (LADO) that adaptively combines the ML policy and expert policy to safeguard the ML predictions to achieve strong competitiveness guarantees. We also prove the average cost bound for LADO, revealing the tradeoff between average performance and worst-case robustness and demonstrating the advantage of training the ML policy by explicitly considering the robustness requirement. Finally, we run an experiment on decentralized battery management. Our results highlight the potential of ML augmentation to improve the average performance as well as the guaranteed worst-case performance of LADO.more » « lessFree, publicly-accessible full text available December 10, 2025
- 
            Public models offer predictions to a variety of downstream tasks and have played a crucial role in various AI applications, showcasing their proficiency in accurate predictions. However, the exclusive emphasis on prediction accuracy may not align with the diverse end objectives of downstream agents. Recognizing the public model's predictions as a service, we advocate for integrating the objectives of downstream agents into the optimization process. Concretely, to address performance disparities and foster fairness among heterogeneous agents in training, we propose a novel Equitable Objective. This objective, coupled with a policy gradient algorithm, is crafted to train the public model to produce a more equitable/uniform performance distribution across downstream agents, each with their unique concerns. Both theoretical analysis and empirical case studies have proven the effectiveness of our method in advancing performance equity across diverse downstream agents utilizing the public model for their decision-making.more » « less
- 
            Fueled by the soaring popularity of foundation models, the accelerated growth of artificial intelligence (AI) models’ enormous environmental footprint has come under increased scrutiny. While many approaches have been proposed to make AI more energy-efficient and environmentally friendly, environmental inequity — the fact that AI’s environmental footprint can be disproportionately higher in certain regions than in others — has emerged, raising social-ecological justice concerns. This paper takes a first step toward addressing AI’s environmental inequity by fairly balancing its regional environmental impact. Concretely, we focus on the carbon and water footprints of AI model inference and propose equity-aware geographical load balancing (eGLB) to explicitly minimize AI’s highest environmental cost across all the regions. The consideration of environmental equity creates substantial algorithmic challenges as the optimal GLB decisions require complete offline information that is lacking practice. To address the challenges, we introduce auxiliary variables and optimize GLB decisions online based on dual mirror descent. In addition to analyzing the performance of eGLB theoretically, we run trace-based empirical simulations by considering a set of geographically distributed data centers that serve inference requests for a large language AI model. The results demonstrate that existing GLB approaches may amplify environmental inequity while eGLB can significantly reduce the regional disparity in terms of carbon and water footprints.more » « less
- 
            This paper studies online resource allocation with replenishable budgets, where budgets can be replenished on top of the initial budget and an agent sequentially chooses online allocation decisions without violating the available budget constraint at each round. We propose a novel online algorithm, called OACP (Opportunistic Allocation with Conservative Pricing), that conservatively adjusts dual variables while opportunistically utilizing available resources. OACP achieves a bounded asymptotic competitive ratio in adversarial settings as the number of decision rounds T gets large. Importantly, the asymptotic competitive ratio of OACP is optimal in the absence of additional assumptions on budget replenishment. To further improve the competitive ratio, we make a mild assumption that there is budget replenishment every T* ≥ 1 decision rounds and propose OACP+ to dynamically adjust the total budget assignment for online allocation. Next, we move beyond the worst-case and propose LA-OACP (Learning-Augmented OACP/OACP+), a novel learning-augmented algorithm for online allocation with replenishable budgets. We prove that LA-OACP can improve the average utility compared to OACP/OACP+ when the ML predictor is properly trained, while still offering worst-case utility guarantees when the ML predictions are arbitrarily wrong. Finally, we run simulation studies of sustainable AI inference powered by renewables, validating our analysis and demonstrating the empirical benefits of LA-OACP.more » « less
- 
            Online optimization with multiple budget constraints is challenging since the online decisions over a short time horizon are coupled together by strict inventory constraints. The existing manually-designed algorithms cannot achieve satisfactory average performance for this setting because they often need a large number of time steps for convergence and/or may violate the inventory constraints. In this paper, we propose a new machine learning (ML) assisted unrolling approach, called LAAU (Learning-Assisted Algorithm Unrolling), which unrolls the agent’s online decision pipeline and leverages an ML model for updating the Lagrangian multiplier online. For efficient training via backpropagation, we derive gradients of the decision pipeline over time. We also provide the average cost bounds for two cases when training data is available offline and collected online, respectively. Finally, we present numerical results to highlight that LAAU can outperform the existing baselines.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available