Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 25, 2023
-
Free, publicly-accessible full text available March 1, 2023
-
The effect of catalyst addition on H2 evolution from composite electrodes of La0.7Sr0.3TiO3 (LST) and BaZr0.1Ce0.7Y0.1Yb0.1O3−δ (BZCYYb) was studied. Starting with symmetric cells (LST∣∣BZCYYb∣∣LST), Pt was added to one or both electrodes, after which i–V polarization measurements were performed in humidified H2 at 723 and 773 K. The base cells showed very high impedances but these decreased dramatically upon addition of Pt to both electrodes. When Pt was added to only one electrode, the cells performed as diodes, showing that Pt was necessary for H2 dissociation but not for H recombination. The effects of adding Ru, W, Re and Femore »
-
Orchestration tools may support K-12 teachers in facilitating student learning, especially when designed to address classroom stakeholders’ needs. Our previous work revealed a need for human-AI shared control when dynamically pairing students for collaborative learning in the classroom, but offered limited guidance on the role each agent should take. In this study, we designed storyboards for scenarios where teachers, students and AI co-orchestrate dynamic pairing when using AI-based adaptive math software for individual and collaborative learning. We surveyed 54 math teachers on their co-orchestration preferences. We found that teachers would like to share control with the AI to lessen theirmore »
-
Hsiao, I. ; Sahebi, S. ; Bouchet, F. ; Vie, J. J. (Ed.)Constructing effective and well-balanced learning groups is important for collaborative learning. Past research explored how group formation policies affect learners’ behaviors and performance. With the different classroom contexts, many group formation policies work in theory, yet their feasibility is rarely investigated in authentic class sessions. In the current work, we define feasibility as the ratio of students being able to find available partners that satisfy a given group formation policy. Informed by user-centered research in K-12 classrooms, we simulated pairing policies on historical data from an intelligent tutoring system (ITS), a process we refer to as SimPairing. As part ofmore »
-
To accurately determine the reliability of SRAMs, we propose a method to estimate the wearout parameters of FEOL TDDB using on-line data collected during operations. Errors in estimating lifetime model parameters are determined as a function of time, which are based on the available failure sample size. Systematic errors are also computed due to uncertainty in estimation of temperature and supply voltage during operations, as well as uncertainty in process parameters and use conditions.
-
Accelerated lifetime tests are necessary for reliability evaluation of circuits and systems, but the parameters for choosing the test conditions are often unknown. Furthermore, reliability testing is generally performed on test structures that have different properties than actual circuits and systems, which may create inconsistencies in how circuits and systems work in reality. To combat this problem, we use ring oscillators, which are similar to circuits, based on the 14nm FinFET node as the circuit vehicle to extract wearout data. We explore the effects of testing time, sample size, and number of stages on the ability to detect failures formore »
-
Effective assessment of degradation induced by electromigration (EM) is necessary for the design of reliable circuits based on FinFET technology. In this paper, a new methodology is proposed where FinFET SRAM cell array activity is used to evaluate the resistance degradation due to EM. The implementation of this methodology consists of analysis of stress evolution, a time-dependent resistance model, cell array activity extraction, and a customized algorithm for cell array reliability evaluation. The stress model is derived from the material transport equation which contains the driving forces due to the gradient of vacancy concentration,temperature, hydrostatic stress, and EM itself. Themore »