Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 11, 2026
-
Free, publicly-accessible full text available April 1, 2026
-
Free, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available March 1, 2026
-
The yields of stabilized Criegee intermediates (sCIs), CH2OO and RCHOO (C2H5CHOO, C3H7CHOO, C4H9CHOO, and C5H11CHOO), produced from ozonolysis of asymmetrical 1-alkenes (1-butene, 1-pentene, 1-hexene, and 1-heptene) were investigated at low pressures (5-16 Torr) using cavity ring-down spectroscopy (CRDS) and chemical titration with sulfur dioxide (SO2). By extrapolating the low-pressure measurements to zero-pressure limit, nascent sCI yields were obtained. Combined with our previous studies on ethene and propene ozonolysis, the nascent sCI yields demonstrated an intriguing trend of increasing with the addition of CH2 groups and eventually reached a plateau at around 31% for longer chain 1-alkenes. In particular, the fraction of stabilized CH2OO reached the plateau from 1-butene, indicating that CH2OO was produced with nearly the same internal energy distribution from 1-butene to 1-heptene. The comparison between the experiments and RRKM calculations suggests that the dissociation of primary ozonide (POZ) of O3 + ethene and propene can be treated by statistical theory, while that of O3 + 1-butene to 1-heptene is non-statistical and intramolecular vibrational redistribution (IVR) of the initial energy on the 1,2,3-trioxolane of POZ throughout the entire molecule was incomplete on the dissociation time scale.more » « less
-
Free, publicly-accessible full text available January 10, 2026
-
ABSTRACT Elements are the basic substances that make up living organisms, and the element composition in plants quantitatively reflect the adaptation of plants to environment. However, the drivers that constitute the species‐specific plant elementome, as well as the bivariate bioelemental correlations in determining the stability of different bioelements are yet unclear. Based on 1058 leaf observations of 84 plant species from 232 wetlands across large environmental gradients, we found that bioelements with higher concentration were more stable and evolutionary constrained. We proposed a stability of well‐coordinated elements hypothesis, suggesting that bioelements that coordinate well in driving certain physiological functions constrain each other, thus maintaining relatively stable ratios in plants. In contrast, those functionally independent bioelements fluctuate greatly with environmental nutrient availability. Cold and saline stresses decreased plant stoichiometric network connectivity, complexity, and stability. Our research filled the gap in study of wetland plant elementome, and provided new evidences of plant–environment interactions in regions sensitive to climate change.more » « less
-
The ultraviolet (UV) photodissociation dynamics of the 1-methylallyl (1-MA) radical were studied using the high-n Rydberg atom time-of-flight (HRTOF) technique in the wavelength region of 226–244 nm. The 1-MA radicals were produced by 193 nm photodissociation of the 3-chloro-1-butene and 1-chloro-2-butene precursor. The 1 + 1 REMPI spectrum of 1-MA agrees with the previous UV absorption spectrum in this wavelength region. Quantum chemistry calculations show that the UV absorption is mainly attributed to the 3pz Rydberg state (perpendicular to the allyl plane). The H atom photofragment yield (PFY) spectrum of 1-MA from 3-chloro-1-butene displays a broad peak around 230 nm, while that from 1-chloro-2-butene peaks at ∼236 nm. The translational energy distributions of the H atom loss product channel, P (ET)’s, show a bimodal distribution indicating two dissociation pathways in 1-MA. The major pathway is isotropic in product angular distribution with β ∼ 0 and has a low fraction of average translational energy in the total excess energy, ⟨fT⟩, in the range of 0.13–0.17; this pathway corresponds to unimolecular dissociation of 1-MA after internal conversion to form 1,3-butadiene + H. The minor pathway is anisotropic with β ∼ −0.23 and has a large ⟨fT⟩ of ∼0.62–0.72. This fast pathway suggests a direct dissociation of the methyl H atom on a repulsive excited state surface or the repulsive part of the ground state surface to form 1,3-butadiene + H. The fast/slow pathway branching ratio is in the range of 0.03–0.08.more » « less
An official website of the United States government
