- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
00000050000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Yang, Liuxiang (5)
-
Chow, Paul (2)
-
Hu, Qingyang (2)
-
Kim, Duck Young (2)
-
Liu, Jin (2)
-
Mao, Ho-Kwang (2)
-
Mao, Ho-kwang (2)
-
Mao, Wendy L. (2)
-
Meng, Yue (2)
-
Xiao, Yuming (2)
-
Yang, Wenge (2)
-
Amine, Khalil (1)
-
Bai, Ligang (1)
-
Bi, Wenli (1)
-
Cao, Gang (1)
-
Casa, Diego (1)
-
Chen, Cheng-Chien (1)
-
Ding, Yang (1)
-
Feng, Zhenxing (1)
-
Gog, Thomas (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Hu, Qingyang ; Kim, Duck Young ; Liu, Jin ; Meng, Yue ; Yang, Liuxiang ; Zhang, Dongzhou ; Mao, Wendy L. ; Mao, Ho-kwang ( , Proceedings of the National Academy of Sciences)
-
Ding, Yang ; Yang, Liuxiang ; Chen, Cheng-Chien ; Kim, Heung-Sik ; Han, Myung Joon ; Luo, Wei ; Feng, Zhenxing ; Upton, Mary ; Casa, Diego ; Kim, Jungho ; et al ( , Physical Review Letters)
-
Oxygen-Rich Lithium Oxide Phases Formed at High Pressure for Potential Lithium-Air Battery ElectrodeYang, Wenge ; Kim, Duck Young ; Yang, Liuxiang ; Li, Nana ; Tang, Lingyun ; Amine, Khalil ; Mao, Ho-Kwang ( , Advanced Science)
-
Wang, Yonggang ; Bai, Ligang ; Wen, Ting ; Yang, Liuxiang ; Gou, Huiyang ; Xiao, Yuming ; Chow, Paul ; Pravica, Michael ; Yang, Wenge ; Zhao, Yusheng ( , Angewandte Chemie)
Abstract Materials with an abrupt volume collapse of more than 20 % during a pressure‐induced phase transition are rarely reported. In such an intriguing phenomenon, the lattice may be coupled with dramatic changes of orbital and/or the spin‐state of the transition metal. A combined in situ crystallography and electron spin‐state study to probe the mechanism of the pressure‐driven lattice collapse in MnS and MnSe is presented. Both materials exhibit a rocksalt‐to‐MnP phase transition under compression with ca. 22 % unit‐cell volume changes, which was found to be coupled with the Mn2+(d5) spin‐state transition from
S =5/2 toS =1/2 and the formation of Mn−Mn intermetallic bonds as supported by the metallic transport behavior of their high‐pressure phases. Our results reveal the mutual relationship between pressure‐driven lattice collapse and the orbital/spin‐state of Mn2+in manganese chalcogenides and also provide deeper insights toward the exploration of new metastable phases with exceptional functionalities.