skip to main content

Search for: All records

Creators/Authors contains: "Yang, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 18, 2023
  2. Free, publicly-accessible full text available June 1, 2023
  3. Free, publicly-accessible full text available April 4, 2024
  4. Free, publicly-accessible full text available September 1, 2023
  5. Abstract We present extensive optical photometry of the afterglow of GRB 221009A. Our data cover 0.9–59.9 days from the time of Swift and Fermi gamma-ray burst (GRB) detections. Photometry in rizy -band filters was collected primarily with Pan-STARRS and supplemented by multiple 1–4 m imaging facilities. We analyzed the Swift X-ray data of the afterglow and found a single decline rate power law f ( t ) ∝ t −1.556±0.002 best describes the light curve. In addition to the high foreground Milky Way dust extinction along this line of sight, the data favor additional extinction to consistently model the optical to X-ray flux with optically thin synchrotron emission. We fit the X-ray-derived power law to the optical light curve and find good agreement with the measured data up to 5−6 days. Thereafter we find a flux excess in the riy bands that peaks in the observer frame at ∼20 days. This excess shares similar light-curve profiles to the Type Ic broad-lined supernovae SN 2016jca and SN 2017iuk once corrected for the GRB redshift of z = 0.151 and arbitrarily scaled. This may be representative of an SN emerging from the declining afterglow. We measure rest-frame absolute peak AB magnitudes ofmore »M g = −19.8 ± 0.6 and M r = − 19.4 ± 0.3 and M z = −20.1 ± 0.3. If this is an SN component, then Bayesian modeling of the excess flux would imply explosion parameters of M ej = 7.1 − 1.7 + 2.4 M ⊙ , M Ni = 1.0 − 0.4 + 0.6 M ⊙ , and v ej = 33,900 − 5700 + 5900 km s −1 , for the ejecta mass, nickel mass, and ejecta velocity respectively, inferring an explosion energy of E kin ≃ 2.6–9.0 × 10 52 erg.« less
    Free, publicly-accessible full text available March 1, 2024
  6. Abstract We assess to what extent seven state-of-the-art dynamical prediction systems can retrospectively predict winter sea surface temperature (SST) in the subpolar North Atlantic and the Nordic seas in the period 1970–2005. We focus on the region where warm water flows poleward (i.e., the Atlantic water pathway to the Arctic) and on interannual-to-decadal time scales. Observational studies demonstrate predictability several years in advance in this region, but we find that SST skill is low with significant skill only at a lead time of 1–2 years. To better understand why the prediction systems have predictive skill or lack thereof, we assess the skill of the systems to reproduce a spatiotemporal SST pattern based on observations. The physical mechanism underlying this pattern is a propagation of oceanic anomalies from low to high latitudes along the major currents, the North Atlantic Current and the Norwegian Atlantic Current. We find that the prediction systems have difficulties in reproducing this pattern. To identify whether the misrepresentation is due to incorrect model physics, we assess the respective uninitialized historical simulations. These simulations also tend to misrepresent the spatiotemporal SST pattern, indicating that the physical mechanism is not properly simulated. However, the representation of the pattern ismore »slightly degraded in the predictions compared to historical runs, which could be a result of initialization shocks and forecast drift effects. Ways to enhance predictions could include improved initialization and better simulation of poleward circulation of anomalies. This might require model resolutions in which flow over complex bathymetry and the physics of mesoscale ocean eddies and their interactions with the atmosphere are resolved. Significance Statement In this study, we find that dynamical prediction systems and their respective climate models struggle to realistically represent ocean surface temperature variability in the eastern subpolar North Atlantic and Nordic seas on interannual-to-decadal time scales. In previous studies, ocean advection is proposed as a key mechanism in propagating temperature anomalies along the Atlantic water pathway toward the Arctic Ocean. Our analysis suggests that the predicted temperature anomalies are not properly circulated to the north; this is a result of model errors that seems to be exacerbated by the effect of initialization shocks and forecast drift. Better climate predictions in the study region will thus require improving the initialization step, as well as enhancing process representation in the climate models.« less
  7. Despite significant contributions to various aspects of cybersecurity, cyber-attacks remain on the unfortunate rise. Increasingly, internationally recognized entities such as the National Science Foundation and National Science & Technology Council have noted Artificial Intelligence can help analyze billions of log files, Dark Web data, malware, and other data sources to help execute fundamental cybersecurity tasks. Our objective for the 1st Workshop on Artificial Intelligence-enabled Cybersecurity Analytics (half-day; co-located with ACM KDD) was to gather academic and practitioners to contribute recent work pertaining to AI-enabled cybersecurity analytics. We composed an outstanding, inter-disciplinary Program Committee with significant expertise in various aspects of AI-enabled Cybersecurity Analytics to evaluate the submitted work. Significant contributions to the half-day workshop were made in the areas of CTI, vulnerability assessment, and malware analysis.