skip to main content

Search for: All records

Creators/Authors contains: "Yang, X."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 29, 2024
  2. Free, publicly-accessible full text available August 1, 2024
  3. Free, publicly-accessible full text available June 1, 2024
  4. Free, publicly-accessible full text available June 1, 2024
  5. Trust has been identified as a central factor for effective human-robot teaming. Existing literature on trust modeling predominantly focuses on dyadic human-autonomy teams where one human agent interacts with one robot. There is little, if not no, research on trust modeling in teams consisting of multiple human agents and multiple robotic agents. To fill this research gap, we present the trust inference and propagation (TIP) model for trust modeling in multi-human multi-robot teams. We assert that in a multi-human multi-robot team, there exist two types of experiences that any human agent has with any robot: direct and indirect experiences. The TIP model presents a novel mathematical framework that explicitly accounts for both types of experiences. To evaluate the model, we conducted a human-subject experiment with 15 pairs of participants (N=30). Each pair performed a search and detection task with two drones. Results show that our TIP model successfully captured the underlying trust dynamics and significantly outperformed a baseline model. To the best of our knowledge, the TIP model is the first mathematical framework for computational trust modeling in multi-human multi-robot teams.
    Free, publicly-accessible full text available January 1, 2024
  6. Free, publicly-accessible full text available December 14, 2023
  7. In this paper, we propose MetaMobi, a novel spatio-temporal multi-dots connectivity-aware modeling and Meta model update approach for crowd Mobility learning. MetaMobi analyzes real-world Wi-Fi association data collected from our campus wireless infrastructure, with the goal towards enabling a smart connected campus. Specifically, MetaMobi aims at addressing the following two major challenges with existing crowd mobility sensing system designs: (a) how to handle the spatially, temporally, and contextually varying features in large-scale human crowd mobility distributions; and (b) how to adapt to the impacts of such crowd mobility patterns as well as the dynamic changes in crowd sensing infrastructures. To handle the first challenge, we design a novel multi-dots connectivity-aware learning approach, which jointly learns the crowd flow time series of multiple buildings with fusion of spatial graph connectivities and temporal attention mechanisms. Furthermore, to overcome the adaptivity issues due to changes in the crowd sensing infrastructures (e.g., installation of new ac- cess points), we further design a novel meta model update approach with Bernoulli dropout, which mitigates the over- fitting behaviors of the model given few-shot distributions of new crowd mobility datasets. Extensive experimental evaluations based on the real-world campus wireless dataset (including over 76 million Wi-Fi association andmore »disassociation records) demonstrate the accuracy, effectiveness, and adaptivity of MetaMobi in forecasting the campus crowd flows, with 30% higher accuracy compared to the state-of-the-art approaches.« less
    Free, publicly-accessible full text available October 5, 2023
  8. Free, publicly-accessible full text available January 1, 2024
  9. Bogomolov, S. ; Parker, D. (Ed.)
    Safety is a critical concern for the next generation of autonomy that is likely to rely heavily on deep neural networks for perception and control. This paper proposes a method to repair unsafe ReLU DNNs in safety-critical systems using reachability analysis. Our repair method uses reachability analysis to calculate the unsafe reachable domain of a DNN, and then uses a novel loss function to construct its distance to the safe domain during the retraining process. Since subtle changes of the DNN parameters can cause unexpected performance degradation, we also present a minimal repair approach where the DNN deviation is minimized. Furthermore, we explore applications of our method to repair DNN agents in deep reinforcement learning (DRL) with seamless integration with learning algorithms. Our method is evaluated on the ACAS Xu benchmark and a rocket lander system against the state-of-the-art method ART. Experimental results show that our repair approach can generate provably safe DNNs on multiple safety specifications with negligible performance degradation, even in the absence of training data (Code is available online at