Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Here we provide percent contribution of mineral associated (i.e., heavy fraction - HF) and relatively more labile (i.e., light fraction - LF) organic matter through soil profiles and along hillslope catena within sites in the Critical Zone Network (CZNet) Geomicrobiology cluster. Each sample is separated into a HF an a LF utilizing a 1.85 g cm-3 sodium polytungstate (3Na2WO4·9WO3·H2O or Na6 [H2W12O40]) solution. The resultant fractions are run for percent carbon (C) and nitrogen (N) and their associated stable isotopes (δ13C and δ15N) to offer novel insights in soil organic matter processes. Samples that were either too small for analytical analysis or below instrument detection limit are labeled with BDL.more » « less
- 
            Abstract Intracellular electrophysiology is essential in neuroscience, cardiology, and pharmacology for studying cells’ electrical properties. Traditional methods like patch-clamp are precise but low-throughput and invasive. Nanoelectrode Arrays (NEAs) offer a promising alternative by enabling simultaneous intracellular and extracellular action potential (iAP and eAP) recordings with high throughput. However, accessing intracellular potentials with NEAs remains challenging. This study presents an AI-supported technique that leverages thousands of synchronous eAP and iAP pairs from stem-cell-derived cardiomyocytes on NEAs. Our analysis revealed strong correlations between specific eAP and iAP features, such as amplitude and spiking velocity, indicating that extracellular signals could be reliable indicators of intracellular activity. We developed a physics-informed deep learning model to reconstruct iAP waveforms from extracellular recordings recorded from NEAs and Microelectrode arrays (MEAs), demonstrating its potential for non-invasive, long-term, high-throughput drug cardiotoxicity assessments. This AI-based model paves the way for future electrophysiology research across various cell types and drug interactions.more » « lessFree, publicly-accessible full text available December 1, 2026
- 
            In this paper, we construct a novel Eulerian–Lagrangian finite volume (ELFV) method for nonlinear scalar hyperbolic equations in one space dimension. It is well known that the exact solutions to such problems may contain shocks though the initial conditions are smooth, and direct numerical methods may suffer from restricted time step sizes. To relieve the restriction, we propose an ELFV method, where the space-time domain was separated by the partition lines originated from the cell interfaces whose slopes are obtained following the Rakine–Hugoniot junmp condition. Unfortunately, to avoid the intersection of the partition lines, the time step sizes are still limited. To fix this gap, we detect effective troubled cells (ETCs) and carefully design the influence region of each ETC, within which the partitioned space-time regions are merged together to form a new one. Then with the new partition of the space-time domain, we theoretically prove that the proposed first-order scheme with Euler forward time discretization is total-variation-diminishing and maximum-principle-preserving with at least twice larger time step constraints than the classical first order Eulerian method for Burgers’ equation. Numerical experiments verify the optimality of the designed time step sizes.more » « lessFree, publicly-accessible full text available July 1, 2026
- 
            Free, publicly-accessible full text available July 8, 2026
- 
            Free, publicly-accessible full text available May 4, 2026
- 
            Free, publicly-accessible full text available May 20, 2026
- 
            Free, publicly-accessible full text available April 17, 2026
- 
            Abstract Cooperative catalysis with an enzyme and a small‐molecule photocatalyst has recently emerged as a potentially general activation mode to advance novel biocatalytic reactions with synthetic utility. Herein, we report cooperative photobiocatalysis involving an engineered nonheme Fe enzyme and a tailored photoredox catalyst to achieve enantioconvergent decarboxylative azidation, thiocyanation, and isocyanation of redox‐active esters via a radical mechanism. We repurposed and further evolved metapyrocatechase (MPC), a nonheme Fe extradiol dioxygenase not previously studied in new‐to‐nature biocatalysis, for the enantioselective C─N3, C─SCN, and C─NCO bond formation via an enzymatic Fe─X intermediate (X═N3, NCS, and NCO). A range of primary, secondary, and tertiary alkyl radical precursors were effectively converted by our engineered MPC, allowing the syntheses of organic azides, thiocyanates, and isocyanates with good to excellent enantiocontrol. Further derivatization of these products furnished valuable compounds including enantioenriched amines, triazoles, ureas, and SCF3‐containing products. DFT and MD simulations shed light on the mechanism as well as the binding poses of the alkyl radical intermediate in the enzyme active site and the π‐facial selectivity in the enantiodetermining radical rebound. Overall, cooperative photometallobiocatalysis with nonheme Fe enzymes provides a means to develop challenging asymmetric radical transformations eluding small‐molecule catalysis.more » « lessFree, publicly-accessible full text available July 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
