Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Direct ethanol fuel cells have been widely investigated as nontoxic and low-corrosive energy conversion devices with high energy and power densities. It is still challenging to develop high-activity and durable catalysts for a complete ethanol oxidation reaction on the anode and accelerated oxygen reduction reaction on the cathode. The materials’ physics and chemistry at the catalytic interface play a vital role in determining the overall performance of the catalysts. Herein, we propose a Pd/Co@N-C catalyst that can be used as a model system to study the synergism and engineering at the solid-solid interface. Particularly, the transformation of amorphous carbon to highly graphitic carbon promoted by cobalt nanoparticles helps achieve the spatial confinement effect, which prevents structural degradation of the catalysts. The strong catalyst-support and electronic effects at the interface between palladium and Co@N-C endow the electron-deficient state of palladium, which enhances the electron transfer and improved activity/durability. The Pd/Co@N-C delivers a maximum power density of 438 mW cm −2 in direct ethanol fuel cells and can be operated stably for more than 1000 hours. This work presents a strategy for the ingenious catalyst structural design that will promote the development of fuel cells and other sustainable energy-related technologies.more » « lessFree, publicly-accessible full text available December 1, 2024
-
In this paper, we investigate the reliability in an unmanned aerial vehicle (UAV) assisted caching-based downlink network where non-orthogonal multiple access (NOMA) transmission and finite blocklength (FBL) codes are adopted. In this network, the ground user equipments (GUEs) request contents from a distant base station (BS) but there are no direct links from the BS to the GUEs. A UAV with limited cache size is employed to assist the BS to complete the communication by either first requesting the uncached contents from the BS and then serving the GUEs or directly sending the cached contents to the GUEs. In this setting, we first introduce the decoding error rate in the FBL regime as well as the caching policy at the UAV, and subsequently we construct an optimization problem aiming to minimize the maximum end-to-end decoding error rate among all GUEs under both coding length and maximum UAV transmission power constraints. A two-step alternating algorithm is proposed to solve the problem and numerical results demonstrate that our algorithm can solve the optimization problem efficiently. More specifically, loosening the FBL constraint, enlarging the cache size and having a higher transmission power budget at the UAV lead to an improved performance.more » « lessFree, publicly-accessible full text available July 1, 2024
-
Free, publicly-accessible full text available March 1, 2024
-
Free, publicly-accessible full text available December 5, 2023
-
Abstract We develop a linearized boundary control method for the inverse boundary value problem of determining a potential in the acoustic wave equation from the Neumann-to-Dirichlet map. When the linearization is at the zero potential, we derive a reconstruction formula based on the boundary control method and prove that it is of Lipschitz-type stability. When the linearization is at a nonzero potential, we prove that the problem is of Hölder-type stability in two and higher dimensions. The proposed reconstruction formula is implemented and evaluated using several numerical experiments to validate its feasibility.more » « lessFree, publicly-accessible full text available October 3, 2023
-
Achieving sustainability of greenhouses by integrating stable semi-transparent organic photovoltaicsFree, publicly-accessible full text available May 1, 2024
-
Free, publicly-accessible full text available November 1, 2023