skip to main content


Search for: All records

Creators/Authors contains: "Yang, Yu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Layered halide perovskites have garnered significant interest due to their exceptional optoelectronic properties and great promises in light‐emitting applications. Achieving high‐performance perovskite light‐emitting diodes (PeLEDs) requires a deep understanding of exciton dynamics in these materials. This review begins with a fundamental overview of the structural and photophysical properties of layered halide perovskites, then delves into the importance of dimensionality control and cascade energy transfer in quasi‐2D PeLEDs. In the second half of the review, more complex exciton dynamics, such as multiexciton processes and triplet exciton dynamics, from the perspective of LEDs are explored. Through this comprehensive review, an in‐depth understanding of the critical aspects of exciton dynamics in layered halide perovskites and their impacts on future research and technological advancements for layered halide PeLEDs is provided.

     
    more » « less
    Free, publicly-accessible full text available November 20, 2025
  2. Free, publicly-accessible full text available July 21, 2025
  3. Free, publicly-accessible full text available November 20, 2025
  4. Thompson sampling (TS) is one of the most popular exploration techniques in reinforcement learning (RL). However, most TS algorithms with theoretical guarantees are difficult to implement and not generalizable to Deep RL. While the emerging approximate sampling-based exploration schemes are promising, most existing algorithms are specific to linear Markov Decision Processes (MDP) with suboptimal regret bounds, or only use the most basic samplers such as Langevin Monte Carlo. In this work, we propose an algorithmic framework that incorporates different approximate sampling methods with the recently proposed Feel-Good Thompson Sampling (FGTS) approach \citep{zhang2022feel,dann2021provably}, which was previously known to be computationally intractable in general. When applied to linear MDPs, our regret analysis yields the best known dependency of regret on dimensionality, surpassing existing randomized algorithms. Additionally, we provide explicit sampling complexity for each employed sampler. Empirically, we show that in tasks where deep exploration is necessary, our proposed algorithms that combine FGTS and approximate sampling perform significantly better compared to other strong baselines. On several challenging games from the Atari 57 suite, our algorithms achieve performance that is either better than or on par with other strong baselines from the deep RL literature. 
    more » « less
    Free, publicly-accessible full text available August 12, 2025
  5. Abstract

    A key challenge underlying the design of miniature machines is encoding materials with time‐ and space‐specific functional behaviors that require little human intervention. Dissipative processes that drive materials beyond equilibrium and evolve continuously with time and location represent one promising strategy to achieve such complex functions. This work reports how internal nonequilibrium states of liquid crystal (LC) emulsion droplets undergoing chemotaxis can be used to time the delivery of a chemical agent to a targeted location. During ballistic motion, hydrodynamic shear forces dominate LC elastic interactions, dispersing microdroplet inclusions (microcargo) within double emulsion droplets. Scale‐dependent colloidal forces then hinder the escape of dispersed microcargo from the propelling droplet. Upon arrival at the targeted location, a circulatory flow of diminished strength allows the microcargo to cluster within the LC elastic environment such that hydrodynamic forces grow to exceed colloidal forces and thus trigger the escape of the microcargo. This work illustrates the utility of the approach by using microcargo that initiate polymerization upon release through the outer interface of the carrier droplet. These findings provide a platform that utilizes nonequilibrium strategies to design autonomous spatial and temporal functions into active materials.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  6. Free, publicly-accessible full text available May 7, 2025
  7. Free, publicly-accessible full text available May 13, 2025
  8. Free, publicly-accessible full text available May 2, 2025