skip to main content

Search for: All records

Creators/Authors contains: "Yang, Zhiqiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In many regions of the world, forest management has reduced old forest and simplified forest structure and composition. We hypothesized that such forest degradation has resulted in long-term habitat loss for forest-associated bird species of eastern Canada (130,017 km 2 ) which, in turn, has caused bird-population declines. Despite little change in overall forest cover, we found substantial reductions in old forest as a result of frequent clear-cutting and a broad-scale transformation to intensified forestry. Back-cast species distribution models revealed that breeding habitat loss occurred for 66% of the 54 most common species from 1985 to 2020 and was strongly associated with reduction in old age classes. Using a long-term, independent dataset, we found that habitat amount predicted population size for 94% of species, and habitat loss was associated with population declines for old-forest species. Forest degradation may therefore be a primary cause of biodiversity decline in managed forest landscapes. 
    more » « less
  2. Abstract

    Postseismic deformation following subduction earthquakes includes the combined effects of afterslip surrounding the coseismic rupture areas and viscoelastic relaxation in the asthenosphere and provides unique and valuable information for understanding the rheological structure. Because the two postseismic mechanisms are usually spatiotemporally intertwined, we developed an integrated model combining their contributions, based on 5 years of observations following the 2016 Pedernales (Ecuador) earthquake. The results show that the early, near‐field postseismic deformation is dominated by afterslip, both updip and downdip of the coseismic rupture, and requires heterogeneous interface frictional properties. Viscoelastic relaxation contributes more to far‐field displacements at later time periods. The best‐fit integrated model favors a 45‐km thick lithosphere overlying a Burgers body viscoelastic asthenosphere with a Maxwell viscosity of 3 × 1019 Pa s (0.9–5 × 1019 Pa s at 95% confidence), assuming the Kelvin viscosity equal to 10% of that value. In addition to the postseismic afterslip, the coastal displacement of sites north and south of the rupture clearly require extra slip in the plate motion direction due to slow slip events that may be triggered by the coseismic stress changes (CSC) but are not purely driven by the CSC. Spatially variable afterslip following the Pedernales event, combined with the SSEs during the interseismic period, demonstrate that spatial frictional variability persists throughout the whole earthquake cycle. The interaction of adjacent fault patches with heterogeneous properties may contribute to the clustered large earthquakes in this area.

    more » « less
  3. The Northwest Forest Plan (NWFP) initiated one of the most sweeping changes to forest management in the world, affecting 10 million hectares of federal land. The NWFP is a science-based plan incorporating monitoring and adaptive management and provides a unique opportunity to evaluate the influence of policy. We used >25 years of region-wide bird surveys, forest data, and land-ownership maps to test this policy’s effect on biodiversity. Clearcutting decreased rapidly, and we expected populations of older-forest–associated birds to stabilize on federal land, but to continue declining on private industrial lands where clearcutting continued. In contrast, we expected declines in early-seral–associated species on federal land because of reduced anthropogenic disturbance since the NWFP. Bayesian hierarchical models revealed that bird species’ population trends tracked changes in forest composition. However, against our expectations, declines of birds associated with older forests accelerated. These declines are partly explained by losses of older forests due to fire on federal land and continued clearcutting elsewhere. Indeed, the NWFP anticipated that reversing declines of older forests would take time. Overall, the early-seral ecosystem area was stable, but declined in two ecoregions—the Coast Range and Cascades—along with early-seral bird populations. Although the NWFP halted clearcutting on federal land, this has so far been insufficient to reverse declines in older-forest–associated bird populations. These findings underscore the importance of continuing to prioritize older forests under the NWFP and ensuring that the recently proposed creation of early-seral ecosystems does not impede the conservation and development of older-forest structure.

    more » « less