skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Yao, Mengqi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With the increase of uncertain and intermittent renewable energy supply on the grid, the power system has become more vulnerable to instability. In this paper, we develop a demand response strategy to improve power system small-signal stability. We pose the problem as an optimization problem wherein the total demand-responsive load is held constant at each time instance but shifted between different buses to improve small-signal stability, which is measured by small-signal stability metrics that are functions of subsets of the system’s eigenvalues, such as the smallest damping ratio. To solve the problem, we use iterative linear programming and generalized eigenvalue sensitivities. We demonstrate the approach via a case study that uses the IEEE 14-bus system. Our results show that shifting the load between buses, can improve a small-signal stability margin. We explore the use of models of different fidelity and find that it is important to include models of the automatic voltage regulators and power system stabilizers. In addition, we show that load shifting can achieve similar improvements to generation shifting and better improvement than simply tuning power system stabilizers. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Growing penetrations of single-phase distributed generation such as rooftop solar photovoltaic (PV) systems can increase voltage unbalance in distribution grids. However, PV systems are also capable of providing reactive power compensation to reduce unbalance. In this paper, we compare two methods to mitigate voltage unbalance with solar PV inverters: a centralized optimization-based method utilizing a three-phase optimal power flow formulation and a distributed approach based on Steinmetz design. While the Steinmetz-based method is computationally simple and does not require extensive communication or full network data, it generally leads to less unbalance improvement and more voltage constraint violations than the optimization-based method. In order to improve the performance of the Steinmetz-based method without adding the full complexity of the optimization-based method, we propose an integrated method that incorporates design parameters computed from the set-points generated by the optimization-based method into the Steinmetz-based method. We test and compare all methods on a large three-phase distribution feeder with time-varying load and PV data. The simulation results indicate trade-offs between the methods in terms of computation time, voltage unbalance reduction, and constraint violations. We find that the integrated method can provide a good balance between performance and information/communication requirements. 
    more » « less