Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Jumping spiders (Salticidae) rely on accurate depth perception for predation and navigation. They accomplish depth perception, despite their tiny brains, by using specialized optics. Each principal eye includes a multitiered retina that simultaneously receives multiple images with different amounts of defocus, and from these images, distance is decoded with relatively little computation. We introduce a compact depth sensor that is inspired by the jumping spider. It combines metalens optics, which modifies the phase of incident light at a subwavelength scale, with efficient computations to measure depth from image defocus. Instead of using a multitiered retina to transduce multiple simultaneous images, the sensor uses a metalens to split the light that passes through an aperture and concurrently form 2 differently defocused images at distinct regions of a single planar photosensor. We demonstrate a system that deploys a 3-mm-diameter metalens to measure depth over a 10-cm distance range, using fewer than 700 floating point operations per output pixel. Compared with previous passive depth sensors, our metalens depth sensor is compact, single-shot, and requires a small amount of computation. This integration of nanophotonics and efficient computation brings artificial depth sensing closer to being feasible on millimeter-scale, microwatts platforms such as microrobots and microsensor networks.more » « less
-
The nature of wave resources usually requires wave energy converter (WEC) components to handle peak loads (i.e., torques, forces, and powers) that are many times greater than their average loads, accelerating equipment degradation. Moreover, due to their isolated nature and harsh operating environment, WEC systems are projected to possess high operations and maintenance (O&M) cost, i.e., around 27% of their leveled cost of energy. As such, developing techniques to mitigate these costs through the application of condition monitoring and fault tolerant control will significantly impact the economic feasibility of grid connected WEC power. Toward this goal, models of faulty components are developed in the open source modeling platform, WEC‐Sim, to estimate the performance and measurable states of a WEC operating with likely device and sensor failures. Two types of faulty component models are then applied to a point absorber WEC model with basic controller damping and spring forces. Resulting changes in device behavior are recorded as a benchmark, and a graph‐theoretic approach is proposed for fault detection and identification utilizing multivariate time series. Simulation results demonstrate that these faults can greatly affect the WEC performance, and that the proposed method can effectively detect and classify different types of faults.more » « less
An official website of the United States government
