Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 1, 2025
-
Abstract A study of the anomalous couplings of the Higgs boson to vector bosons, including
-violation effects, has been conducted using its production and decay in the WW channel. This analysis is performed on proton–proton collision data collected with the CMS detector at the CERN LHC during 2016–2018 at a center-of-mass energy of 13 TeV, and corresponds to an integrated luminosity of 138$${\textit{CP}}$$ . The different-flavor dilepton$$\,\text {fb}^{-1}$$ final state is analyzed, with dedicated categories targeting gluon fusion, electroweak vector boson fusion, and associated production with a W or Z boson. Kinematic information from associated jets is combined using matrix element techniques to increase the sensitivity to anomalous effects at the production vertex. A simultaneous measurement of four Higgs boson couplings to electroweak vector bosons is performed in the framework of a standard model effective field theory. All measurements are consistent with the expectations for the standard model Higgs boson and constraints are set on the fractional contribution of the anomalous couplings to the Higgs boson production cross section.$$({\textrm{e}} {{\upmu }})$$ Free, publicly-accessible full text available August 1, 2025 -
A bstract Measurements of the charge-dependent two-particle angular correlation function in proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy of
= 8$$ \sqrt{s_{\textrm{NN}}} $$ . 16 TeV and lead-lead (PbPb) collisions at = 5$$ \sqrt{s_{\textrm{NN}}} $$ . 02 TeV are reported. The pPb and PbPb data sets correspond to integrated luminosities of 186 nb− 1and 0.607 nb− 1, respectively, and were collected using the CMS detector at the CERN LHC. The charge-dependent correlations are characterized by balance functions of same- and opposite-sign particle pairs. The balance functions, which contain information about the creation time of charged particle pairs and the development of collectivity, are studied as functions of relative pseudorapidity (∆η ) and relative azimuthal angle (∆ϕ ), for various multiplicity and transverse momentum (p T) intervals. A multiplicity dependence of the balance function is observed in ∆η and ∆ϕ for both systems. The width of the balance functions decreases towards high-multiplicity collisions in the momentum region< 2 GeV, for pPb and PbPb results. Integrals of the balance functions are presented in both systems, and a mild dependence of the charge-balancing fractions on multiplicity is observed. No multiplicity dependence is observed at higher transverse momentum. The data are compared withhydjet ,hijing , andampt generator predictions, none of which capture completely the multiplicity dependence seen in the data. The comparison of results with different center-of-mass energies suggests that the balance functions become narrower at higher energies, which is consistent with the idea of delayed hadronization and the effect of radial flow.Free, publicly-accessible full text available August 1, 2025 -
Abstract A measurement is presented of a ratio observable that provides a measure of the azimuthal correlations among jets with large transverse momentum
. This observable is measured in multijet events over the range of$$p_{\textrm{T}}$$ –$$p_{\textrm{T}} = 360$$ based on data collected by the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13$$3170\,\text {Ge}\hspace{-.08em}\text {V} $$ , corresponding to an integrated luminosity of 134$$\,\text {Te}\hspace{-.08em}\text {V}$$ . The results are compared with predictions from Monte Carlo parton-shower event generator simulations, as well as with fixed-order perturbative quantum chromodynamics (pQCD) predictions at next-to-leading-order (NLO) accuracy obtained with different parton distribution functions (PDFs) and corrected for nonperturbative and electroweak effects. Data and theory agree within uncertainties. From the comparison of the measured observable with the pQCD prediction obtained with the NNPDF3.1 NLO PDFs, the strong coupling at the Z boson mass scale is$$\,\text {fb}^{-1}$$ , where the total uncertainty is dominated by the scale dependence of the fixed-order predictions. A test of the running of$$\alpha _\textrm{S} (m_{{\textrm{Z}}}) =0.1177 \pm 0.0013\, \text {(exp)} _{-0.0073}^{+0.0116} \,\text {(theo)} = 0.1177_{-0.0074}^{+0.0117}$$ in the$$\alpha _\textrm{S}$$ region shows no deviation from the expected NLO pQCD behaviour.$$\,\text {Te}\hspace{-.08em}\text {V}$$ Free, publicly-accessible full text available August 1, 2025 -
Energy correlators that describe energy-weighted distances between two or three particles in a hadronic jet are measured using an event sample ofproton-proton collisions collected by the CMS experiment and corresponding to an integrated luminosity of. The measured distributions are consistent with the trends in the simulation that reveal two key features of the strong interaction: confinement and asymptotic freedom. By comparing the ratio of the measured three- and two-particle energy correlator distributions with theoretical calculations that resum collinear emissions at approximate next-to-next-to-leading-logarithmic accuracy matched to a next-to-leading-order calculation, the strong coupling is determined at theboson mass:, the most precisevalue obtained using jet substructure observables.
© 2024 CERN, for the CMS Collaboration 2024 CERN Free, publicly-accessible full text available August 1, 2025 -
A search for beyond the standard model spin-0 bosons,, that decay into pairs of electrons, muons, or tau leptons is presented. The search targets the associated production of such bosons with aorgauge boson, or a top quark-antiquark pair, and uses events with three or four charged leptons, including hadronically decaying tau leptons. The proton-proton collision data set used in the analysis was collected at the LHC from 2016 to 2018 at a center-of-mass energy of 13 TeV, and corresponds to an integrated luminosity of. The observations are consistent with the predictions from standard model processes. Upper limits are placed on the product of cross sections and branching fractions of such new particles over the mass range of 15 to 350 GeV with scalar, pseudoscalar, or Higgs-boson-like couplings, as well as on the product of coupling parameters and branching fractions. Several model-dependent exclusion limits are also presented. For a Higgs-boson-likemodel, limits are set on the mixing angle of the Higgs boson with theboson. For the associated production of aboson with a top quark-antiquark pair, limits are set on the coupling to top quarks. Finally, limits are set for the first time on a fermiophilic dilaton-like model with scalar couplings and a fermiophilic axion-like model with pseudoscalar couplings.
© 2024 CERN, for the CMS Collaboration 2024 CERN Free, publicly-accessible full text available July 1, 2025 -
A search for heavy neutral leptons (HNLs) decaying in the CMS muon system is presented. A data sample is used corresponding to an integrated luminosity ofof proton-proton collisions at, recorded at the CERN LHC in 2016–2018. Decay products of long-lived HNLs could interact with the shielding materials in the CMS muon system and create hadronic and electromagnetic showers detected in the muon chambers. This distinctive signature provides a unique handle to search for HNLs with masses below 4 GeV and proper decay lengths of the order of meters. The signature is sensitive to HNL couplings to all three generations of leptons. Candidate events are required to contain a prompt electron or muon originating from a vertex on the beam axis and a displaced shower in the muon chambers. No significant deviations from the standard model background expectation are observed. In the electron (muon) channel, the most stringent limits to date are set for HNLs in the mass range of 2.1–3.0 (1.9–3.3) GeV, reaching mixing matrix element squared values as low as.
© 2024 CERN, for the CMS Collaboration 2024 CERN Free, publicly-accessible full text available July 1, 2025 -
A bstract A search for Higgs boson pair (HH) production with one Higgs boson decaying to two bottom quarks and the other to two W bosons are presented. The search is done using proton-proton collisions data at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb
− 1recorded by the CMS detector at the LHC from 2016 to 2018. The final states considered include at least one leptonically decaying W boson. No evidence for the presence of a signal is observed and corresponding upper limits on the HH production cross section are derived. The limit on the inclusive cross section of the nonresonant HH production, assuming that the distributions of kinematic observables are as expected in the standard model (SM), is observed (expected) to be 14 (18) times the value predicted by the SM, at 95% confidence level. The limits on the cross section are also presented as functions of various Higgs boson coupling modifiers, and anomalous Higgs boson coupling scenarios. In addition, limits are set on the resonant HH production via spin-0 and spin-2 resonances within the mass range 250–900 GeV.Free, publicly-accessible full text available July 1, 2025 -
A search for pair production of scalar and vector leptoquarks (LQs) each decaying to a muon and a bottom quark is performed using proton-proton collision data collected atwith the CMS detector at the CERN LHC, corresponding to an integrated luminosity of. No excess above standard model expectation is observed. Scalar (vector) LQs with masses less than 1810 (2120) GeV are excluded at 95% confidence level, assuming a 100% branching fraction of the LQ decaying to a muon and a bottom quark. These limits represent the most stringent to date.
© 2024 CERN, for the CMS Collaboration 2024 CERN Free, publicly-accessible full text available June 1, 2025 -
A search for the production of long-lived particles in proton-proton collisions at a center-of-mass energy of 13 TeV at the CERN LHC is presented. The search is based on data collected by the CMS experiment in 2016–2018, corresponding to a total integrated luminosity of. This search is designed to be sensitive to long-lived particles with mean proper decay lengths between 0.1 and 1000 mm, whose decay products produce a final state with at least one displaced vertex and missing transverse momentum. A machine learning algorithm, which improves the background rejection power by more than an order of magnitude, is applied to improve the sensitivity. The observation is consistent with the standard model background prediction, and the results are used to constrain split supersymmetry (SUSY) and gauge-mediated SUSY breaking models with different gluino mean proper decay lengths and masses. This search is the first CMS search that shows sensitivity to hadronically decaying long-lived particles from signals with mass differences between the gluino and neutralino below 100 GeV. It sets the most stringent limits to date for split-SUSY models and gauge-mediated SUSY breaking models with gluino proper decay length less than 6 mm.
© 2024 CERN, for the CMS Collaboration 2024 CERN Free, publicly-accessible full text available June 1, 2025