Flat band systems are currently under intense investigation in quantum materials, optical lattices, and metamaterials. These efforts are motivated by potential realization of strongly correlated phenomena enabled by frustration-induced flat band dispersions; identification of candidate platforms plays an important role in these efforts. Here, we develop a high-throughput materials search for bulk crystalline flat bands by automated construction of uniform-hopping near-neighbor tight-binding models. We show that this approach captures many of the essential features relevant to identifying flat band lattice motifs in candidate materials in a computationally inexpensive manner, and is of use to identify systems for further detailed investigation as well as theoretical and metamaterials studies of model systems. We apply this algorithm to 139,367 materials in the Materials Project database and identify 63,076 materials that host at least one flat band elemental sublattice. We further categorize these candidate systems into at least 31,635 unique flat band crystal nets and identify candidates of interest from both lattice and band structure perspectives. This work expands the number of known flat band lattices that exist in physically realizable crystal structures and classifies the majority of these systems by the underlying lattice, providing additional insights for familiar (e.g., kagome, pyrochlore, Lieb, and dice) as well as previously unknown motifs.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Free, publicly-accessible full text available December 1, 2025 -
Adiabatic decompression of paraquadrupolar materials has significant potential as a cryogenic cooling technology. We focus on TmVO
, an archetypal material that undergoes a continuous phase transition to a ferroquadrupole-ordered state at 2.15 K. Above the phase transition, each Tm ion contributes an entropy of due to the degeneracy of the crystal electric field groundstate. Owing to the large magnetoelastic coupling, which is a prerequisite for a material to undergo a phase transition via the cooperative Jahn–Teller effect, this level splitting, and hence the entropy, can be readily tuned by externally induced strain. Using a dynamic technique in which the strain is rapidly oscillated, we measure the adiabatic elastocaloric response of single-crystal TmVO , and thus experimentally obtain the entropy landscape as a function of strain and temperature. The measurement confirms the suitability of this class of materials for cryogenic cooling applications and provides insight into the dynamic quadrupole strain susceptibility. Free, publicly-accessible full text available June 18, 2025 -
The propagation of spin waves in magnetically ordered systems has emerged as a potential means to shuttle quantum information over large distances. Conventionally, the arrival time of a spin wavepacket at a distance,
d , is assumed to be determined by its group velocity,v g . Here, we report time-resolved optical measurements of wavepacket propagation in the Kagome ferromagnet Fe3Sn2that demonstrate the arrival of spin information at times significantly less thand /v g . We show that this spin wave “precursor” originates from the interaction of light with the unusual spectrum of magnetostatic modes in Fe3Sn2. Related effects may have far-reaching consequences toward realizing long-range, ultrafast spin wave transport in both ferromagnetic and antiferromagnetic systems.