Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The classic problem of exact subgraph matching returns those subgraphs in a large-scale data graph that are isomorphic to a given query graph, which has gained increasing importance in many real-world applications such as social network analysis, knowledge graph discovery in the Semantic Web, bibliographical network mining, and so on. In this paper, we propose a novel and effective graph neural network (GNN)-based path embedding framework (GNN-PE), which allows efficient exact subgraph matching without introducing false dismissals. Unlike traditional GNN-based graph embeddings that only produce approximate subgraph matching results, in this paper, we carefully devise GNN-based embeddings for paths, such that: if two paths (and 1-hop neighbors of vertices on them) have the subgraph relationship, their corresponding GNN-based embedding vectors will strictly follow the dominance relationship. With such a newly designed property of path dominance embeddings, we are able to propose effective pruning strategies based on path label/dominance embeddings and guarantee no false dismissals for subgraph matching. We build multidimensional indexes over path embedding vectors, and develop an efficient subgraph matching algorithm by traversing indexes over graph partitions in parallel and applying our pruning methods. We also propose a cost-model-based query plan that obtains query paths from the query graph with low query cost. Through extensive experiments, we confirm the efficiency and effectiveness of our proposed GNN-PE approach for exact subgraph matching on both real and synthetic graph data.more » « lessFree, publicly-accessible full text available August 25, 2025
-
In many real-world applications such as social network analysis and online marketing/advertising, community detection is a fundamental task to identify communities (subgraphs) in social networks with high structural cohesiveness. While previous works focus on detecting communities alone, they do not consider the collective influences of users in these communities on other user nodes in social networks. Inspired by this, in this paper, we investigate the influence propagation from some seed communities and their influential effects that result in the influenced communities. We propose a novel problem, named Top-L most Influential Community DEtection (TopL-ICDE) over social networks, which aims to retrieve top-L seed communities with the highest influences, having high structural cohesiveness, and containing user-specified query keywords. To efficiently tackle the TopL-ICDE problem, we design effective pruning strategies to filter out false alarms of seed communities and propose an effective index mechanism to facilitate efficient Top-L community retrieval. We develop an efficient TopL-ICDE answering algorithm by traversing the index and applying our proposed pruning strategies. We also formulate and tackle a variant of TopL-ICDE, named diversified top-L most influential community detection (DTopL-ICDE), which returns a set of L diversified communities with the highest diversity score (i.e., collaborative influences by L communities). We prove that DTopL-ICDE is NP-hard, and propose an efficient greedy algorithm with our designed diversity score pruning. Through extensive experiments, we verify the efficiency and effectiveness of our proposed TopL-ICDE and DTopL-ICDE approaches over real/synthetic social networks under various parameter settings.more » « lessFree, publicly-accessible full text available May 13, 2025
-
Field-programmable gate arrays (FPGAs) provide an opportunity to co-design applications with hardware accelerators, yet they remain difficult to program. High-level synthesis (HLS) tools promise to raise the level of abstraction by compiling C or C++ to accelerator designs. Repurposing legacy software languages, however, requires complex heuristics to map imperative code onto hardware structures. We find that the black-box heuristics in HLS can be unpredictable: changing parameters in the program that should improve performance can counterintuitively yield slower and larger designs. This paper proposes a type system that restricts HLS to programs that can predictably compile to hardware accelerators. The key idea is to model consumable hardware resources with a time-sensitive affine type system that prevents simultaneous uses of the same hardware structure. We implement the type system in Dahlia, a language that compiles to HLS C++, and show that it can reduce the size of HLS parameter spaces while accepting Pareto-optimal designs.more » « less
-
Energy correlators that describe energy-weighted distances between two or three particles in a hadronic jet are measured using an event sample ofproton-proton collisions collected by the CMS experiment and corresponding to an integrated luminosity of. The measured distributions are consistent with the trends in the simulation that reveal two key features of the strong interaction: confinement and asymptotic freedom. By comparing the ratio of the measured three- and two-particle energy correlator distributions with theoretical calculations that resum collinear emissions at approximate next-to-next-to-leading-logarithmic accuracy matched to a next-to-leading-order calculation, the strong coupling is determined at theboson mass:, the most precisevalue obtained using jet substructure observables.
© 2024 CERN, for the CMS Collaboration 2024 CERN Free, publicly-accessible full text available August 1, 2025