- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Liu, Fangyu (1)
-
Wang, Linbing (1)
-
Ye, Zhoujing (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
NA (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
NA (Ed.)Deep transfer learning (TL) has great potential for a wide range of applications in civil engineering. This work aims to propose a deep transfer learning-based method for vehicle classification by asphalt pavement vibration. This work first used the pavement vibration IoT monitoring system to collect raw vibration signals and performed the wavelet transform to obtain denoised vibration signals. The vibration signals were then represented in two different ways, including the time-domain graph and the time-frequency graph. Finally, two deep transfer learning-based methods, namely Method Ⅰ (Time-domain & TL) and Method Ⅱ (Time-frequency & TL), were applied for vehicle classification according to the two different representations of vibration signals. The results show that the CNN model had a satisfactory performance in both methods with the accuracy of Method Ⅰ exceeding 0.94 and Method Ⅱ exceeding 0.95. The CNN model in Method Ⅱ performed better in the accuracy metrics with considering label imbalance, but worse in the accuracy metrics without considering label imbalance than that in Method Ⅰ. The differences between these two methods have been investigated and discussed in detail in terms of input types, accuracy metrics, and application prospects. The CNN model with deep transfer learning could be an effective, accurate, and reliable technique for vehicle classification based on asphalt pavement vibration.more » « less
An official website of the United States government
