skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yeck, William L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT The foundation of earthquake monitoring is the ability to rapidly detect, locate, and estimate the size of seismic sources. Earthquake magnitudes are particularly difficult to rapidly characterize because magnitude types are only applicable to specific magnitude ranges, and location errors propagate to substantial magnitude errors. We developed a method for rapid estimation of single-station earthquake magnitudes using raw three-component P waveforms observed at local to teleseismic distances, independent of prior size or location information. We used the MagNet regression model architecture (Mousavi and Beroza, 2020b), which combines convolutional and recurrent neural networks. We trained our model using ∼2.4 million P-phase arrivals labeled by the authoritative magnitude assigned by the U.S. Geological Survey. We tested input data parameters (e.g., window length) that could affect the performance of our model in near-real-time monitoring applications. At the longest waveform window length of 114 s, our model (Artificial Intelligence Magnitude [AIMag]) is accurate (median estimated magnitude within ±0.5 magnitude units from catalog magnitude) between M 2.3 and 7.6. However, magnitudes above M ∼7 are more underestimated as true magnitude increases. As the windows are shortened down to 1 s, the point at which higher magnitudes begin to be underestimated moves toward lower magnitudes, and the degree of underestimation increases. The over and underestimation of magnitudes for the smallest and largest earthquakes, respectively, are potentially related to the limited number of events in these ranges within the training data, as well as magnitude saturation effects related to not capturing the full source time function of large earthquakes. Importantly, AIMag can determine earthquake magnitudes with individual stations’ waveforms without instrument response correction or knowledge of an earthquake’s source-station distance. This work may enable monitoring agencies to more rapidly recognize large, potentially tsunamigenic global earthquakes from few stations, allowing for faster event processing and reporting. This is critical for timely warnings for seismic-related hazards. 
    more » « less