skip to main content

Search for: All records

Creators/Authors contains: "Yefremenko, V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2024
  2. Free, publicly-accessible full text available August 1, 2024
  3. Abstract

    Including millimeter-wave data in multiwavelength studies of the variability of active galactic nuclei (AGN) can provide insights into AGN physics that are not easily accessible at other wavelengths. We demonstrate in this work the potential of cosmic microwave background (CMB) telescopes to provide long-term, high-cadence millimeter-wave AGN monitoring over large fractions of sky. We report on a pilot study using data from the SPTpol instrument on the South Pole Telescope (SPT), which was designed to observe the CMB at arcminute and larger angular scales. Between 2013 and 2016, SPTpol was used primarily to observe a single 500 deg2field, covering the entire field several times per day with detectors sensitive to radiation in bands centered at 95 and 150 GHz. We use SPT 150 GHz observations to create AGN light curves, and we compare these millimeter-wave light curves to those at other wavelengths, in particularγ-ray and optical. In this Letter, we focus on a single source, PKS 2326-502, which has extensive, day-timescale monitoring data in gamma-ray, optical, and now millimeter-wave between 2013 and 2016. We find PKS 2326-502 to be in a flaring state in the first 2 yr of this monitoring, and we present a search for evidence of correlated variability between millimeter-wave, opticalR-band, andγ-ray observations. This pilot study is paving the way for AGN monitoring with current and upcoming CMB experiments such as SPT-3G, Simons Observatory, and CMB-S4, including multiwavelength studies with facilities such as Vera C. Rubin Observatories Large Synoptic Survey Telescope.

    more » « less
  4. Abstract CUPID is a next-generation bolometric experiment aiming at searching for neutrinoless double-beta decay with ∼250 kg of isotopic mass of 100 Mo. It will operate at ∼10 mK in a cryostat currently hosting a similar-scale bolometric array for the CUORE experiment at the Gran Sasso National Laboratory (Italy). CUPID will be based on large-volume scintillating bolometers consisting of 100 Mo-enriched Li 2 MoO 4 crystals, facing thin Ge-wafer-based bolometric light detectors. In the CUPID design, the detector structure is novel and needs to be validated. In particular, the CUORE cryostat presents a high level of mechanical vibrations due to the use of pulse tubes and the effect of vibrations on the detector performance must be investigated. In this paper we report the first test of the CUPID-design bolometric light detectors with NTD-Ge sensors in a dilution refrigerator equipped with a pulse tube in an above-ground lab. Light detectors are characterized in terms of sensitivity, energy resolution, pulse time constants, and noise power spectrum. Despite the challenging noisy environment due to pulse-tube-induced vibrations, we demonstrate that all the four tested light detectors comply with the CUPID goal in terms of intrinsic energy resolution of 100 eV RMS baseline noise. Indeed, we have measured 70–90 eV RMS for the four devices, which show an excellent reproducibility. We have also obtained high energy resolutions at the 356 keV line from a 133 Ba source, as good as Ge semiconductor γ detectors in this energy range. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  5. Abstract An array of twelve 0.28 kg lithium molybdate (LMO) low-temperature bolometers equipped with 16 bolometric Ge light detectors, aiming at optimization of detector structure for CROSS and CUPID double-beta decay experiments, was constructed and tested in a low-background pulse-tube-based cryostat at the Canfranc underground laboratory in Spain. Performance of the scintillating bolometers was studied depending on the size of phonon NTD-Ge sensors glued to both LMO and Ge absorbers, shape of the Ge light detectors (circular vs. square, from two suppliers), in different light collection conditions (with and without reflector, with aluminum coated LMO crystal surface). The scintillating bolometer array was operated over 8 months in the low-background conditions that allowed to probe a very low, μBq/kg, level of the LMO crystals radioactive contamination by 228 Th and 226 Ra. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  6. Free, publicly-accessible full text available June 1, 2024
  7. Free, publicly-accessible full text available February 1, 2024
  8. Abstract We perform the first simultaneous Bayesian parameter inference and optimal reconstruction of the gravitational lensing of the cosmic microwave background (CMB), using 100 deg 2 of polarization observations from the SPTpol receiver on the South Pole Telescope. These data reach noise levels as low as 5.8 μ K arcmin in polarization, which are low enough that the typically used quadratic estimator (QE) technique for analyzing CMB lensing is significantly suboptimal. Conversely, the Bayesian procedure extracts all lensing information from the data and is optimal at any noise level. We infer the amplitude of the gravitational lensing potential to be A ϕ = 0.949 ± 0.122 using the Bayesian pipeline, consistent with our QE pipeline result, but with 17% smaller error bars. The Bayesian analysis also provides a simple way to account for systematic uncertainties, performing a similar job as frequentist “bias hardening” or linear bias correction, and reducing the systematic uncertainty on A ϕ due to polarization calibration from almost half of the statistical error to effectively zero. Finally, we jointly constrain A ϕ along with A L , the amplitude of lensing-like effects on the CMB power spectra, demonstrating that the Bayesian method can be used to easily infer parameters both from an optimal lensing reconstruction and from the delensed CMB, while exactly accounting for the correlation between the two. These results demonstrate the feasibility of the Bayesian approach on real data, and pave the way for future analysis of deep CMB polarization measurements with SPT-3G, Simons Observatory, and CMB-S4, where improvements relative to the QE can reach 1.5 times tighter constraints on A ϕ and seven times lower effective lensing reconstruction noise. 
    more » « less