skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yeun_Kim, Ki"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We consider billiards with cusps and with gravity pulling the particle into the cusp. We discover an adiabatic invariant in this context; it turns out that the invariant is in form almost identical to the Clairaut integral (angular momentum) for surfaces of revolution. We also approximate the bouncing motion of a particle near a cusp by smooth motion governed by a differential equation—which turns out to be identical to the differential equation governing geodesic motion on a surface of revolution. We also show that even in the presence of gravity pulling into a cusp of a billiard table, only the direct-hit orbit reaches the tip of the cusp. Finally, we provide an estimate of the maximal depth to which a particle penetrates the cusp before being ejected from it. 
    more » « less