Activities and physical effort have been commonly estimated using a metabolic rate through indirect calorimetry to capture breath information. The physical effort represents the work hardness used to optimize wearable robotic systems. Thus, personalization and rapid optimization of the effort are critical. Although respirometry is the gold standard for estimating metabolic costs, this method requires a heavy, bulky, and rigid system, limiting the system’s field deployability. Here, this paper reports a soft, flexible bioelectronic system that integrates a wearable ankle-foot exoskeleton, used to estimate metabolic costs and physical effort, demonstrating the potential for real-time wearable robot adjustments based on biofeedback. Data from a set of activities, including walking, running, and squatting with the biopatch and exoskeleton, determines the relationship between metabolic costs and heart rate variability root mean square of successive differences (HRV-RMSSD) (
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract R = −0.758). Collectively, the exoskeleton-integrated wearable system shows potential to develop a field-deployable exoskeleton platform that can measure wireless real-time physiological signals. -
Abstract Athletes are at high risk of dehydration, fatigue, and cardiac disorders due to extreme performance in often harsh environments. Despite advancements in sports training protocols, there is an urgent need for a non‐invasive system capable of comprehensive health monitoring. Although a few existing wearables measure athlete's performance, they are limited by a single function, rigidity, bulkiness, and required straps and adhesives. Here, an all‐in‐one, multi‐sensor integrated wearable system utilizing a set of nanomembrane soft sensors and electronics, enabling wireless, real‐time, continuous monitoring of saliva osmolality, skin temperature, and heart functions is introduced. This system, using a soft patch and a sensor‐integrated mouthguard, provides comprehensive monitoring of an athlete's hydration and physiological stress levels. A validation study in detecting real‐time physiological levels shows the device's performance in capturing moments (400–500 s) of synchronized acute elevation in dehydration (350%) and physiological strain (175%) during field training sessions. Demonstration with a few human subjects highlights the system's capability to detect early signs of health abnormality, thus improving the healthcare of sports athletes.
-
Abstract Augmented reality (AR) is a computer graphics technique that creates a seamless interface between the real and virtual worlds. AR usage rapidly spreads across diverse areas, such as healthcare, education, and entertainment. Despite its immense potential, AR interface controls rely on an external joystick, a smartphone, or a fixed camera system susceptible to lighting. Here, an AR‐integrated soft wearable electronic system that detects the gestures of a subject for more intuitive, accurate, and direct control of external systems is introduced. Specifically, a soft, all‐in‐one wearable device includes a scalable electrode array and integrated wireless system to measure electromyograms for real‐time continuous recognition of hand gestures. An advanced machine learning algorithm embedded in the system enables the classification of ten different classes with an accuracy of 96.08%. Compared to the conventional rigid wearables, the multi‐channel soft wearable system offers an enhanced signal‐to‐noise ratio and consistency over multiple uses due to skin conformality. The demonstration of the AR‐integrated soft wearable system for drone control captures the potential of the platform technology to offer numerous human–machine interface opportunities for users to interact remotely with external hardware and software.