skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Yi, Xianfeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Carbocations play crucial roles during catalytic reactions by dictating the reaction pathways and genuine mechanisms, but the instability of carbocations prevents thorough observations. The stabilization of carbocations would greatly help us gain a deep understanding of the reaction mechanisms. By means of ab initio molecular dynamics (AIMD) simulations and an in situ experimental approach, a complete scrambling of 13C-labeled C4 = products was observed during the isomerization reaction in the H-ZSM5 zeolite at room temperature, and the corner-protonated methyl cyclopropanes (as a non-classical carbocation) featuring the three center two-electron (3cā€“2e) bonds were confirmed to be the highly active metastable intermediates of C4 isomerization. Our results not only uncover the nature of facile C shift in carbocations during zeolite-catalyzed reactions but also bring some fundamental understandings to carbocation chemistry in a zeolite confined environment 
    more » « less