Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Mechanical stretch can activate long-lived changes in fibroblasts, increasing their contractility and initiating phenotypic transformations. This activation, critical to wound healing and procedures such as skin grafting, increases with mechanical stimulus for cells cultured in two-dimensional but is highly variable in cells in three-dimensional (3D) tissue. Here, we show that static mechanical stretch of cells in 3D tissues can either increase or decrease fibroblast activation depending upon recursive cell–extracellular matrix (ECM) feedback and demonstrate control of this activation through integrated in vitro and mathematical models. ECM viscoelasticity, signaling dynamics, and cell mechanics combine to yield a predictable, but nonmonotonic, relationship between mechanical stretch and long-term cell activation. Results demonstrate that feedback between cells and ECM determine how cells retain memory of mechanical stretch and have direct implications for improving outcomes in skin grafting procedures.more » « lessFree, publicly-accessible full text available March 25, 2026
-
The ruminants are one of the most successful mammalian lineages, exhibiting morphological and habitat diversity and containing several key livestock species. To better understand their evolution, we generated and analyzed de novo assembled genomes of 44 ruminant species, representing all six Ruminantia families. We used these genomes to create a time-calibrated phylogeny to resolve topological controversies, overcoming the challenges of incomplete lineage sorting. Population dynamic analyses show that population declines commenced between 100,000 and 50,000 years ago, which is concomitant with expansion in human populations. We also reveal genes and regulatory elements that possibly contribute to the evolution of the digestive system, cranial appendages, immune system, metabolism, body size, cursorial locomotion, and dentition of the ruminants.more » « less
An official website of the United States government
