skip to main content

Search for: All records

Creators/Authors contains: "Yoo, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many researchers have identified the need for a more holistic understanding of the role of feedback in supporting learning in online environments. This study explores how our design, development, and implementation of an online feedback facilitation system influenced high school science teachers’ learning in an asynchronous teacher professional development online course. We then describe teachers’ and facilitators’, i.e., feedback providers’, perceptions of the effectiveness of the system’s features for supporting participants’ learning and engagement. Our work also responds to recent calls for developing a more nuanced understanding of how the complexity of feedback influences learning and the need for more qualitative research on online facilitators’ and learners’ experiences working with new technologies. Results demonstrated that, despite the difficulty of analyzing the complex variables influencing learners’ interactions and perceptions of the feedback system, designing adaptive feedback systems that draw on the principles of design- based implementation research (DBIR) offer promise for enhancing the systems’ contributions to teacher learning.
  2. Free, publicly-accessible full text available August 1, 2023
  3. Free, publicly-accessible full text available August 1, 2023
  4. Abstract We present the analysis and results of the first datasetcollected with the MARS neutron detectordeployed at the Oak Ridge NationalLaboratory Spallation Neutron Source (SNS) for the purpose ofmonitoring and characterizing the beam-related neutron (BRN) backgroundfor the COHERENT collaboration. MARS was positionednext to the COH-CsI coherent elastic neutrino-nucleus scattering detectorin the SNS basement corridor. This is the basement location ofclosest proximity to the SNS target and thus, of highest neutrino flux,but it is also well shielded from the BRN flux by infill concreteand gravel. These data show the detector registered roughly one BRN per day.Using MARS' measured detection efficiency, the incomingBRN flux is estimated to be 1.20 ± 0.56 neutrons/m^2/MWhfor neutron energies above ∼3.5 MeV and up to a few tens of MeV.We compare our results with previous BRN measurements in the SNS basement corridorreported by other neutron detectors.
  5. Free, publicly-accessible full text available March 1, 2024