Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We report a precision measurement of the parity-violating asymmetry APV in the elastic scattering of longitudinally polarized electrons from 208Pb. We measure APV=550±16(stat)±8(syst) parts per billion, leading to an extraction of the neutral weak form factor FW(Q2=0.00616 GeV2)=0.368±0.013. Combined with our previous measurement, the extracted neutron skin thickness is Rn−Rp=0.283±0.071 fm. The result also yields the first significant direct measurement of the interior weak density of 208Pb: ρ0W=−0.0796±0.0036(exp)±0.0013(theo) fm−3 leading to the interior baryon density ρ0b=0.1480±0.0036(exp)±0.0013(theo) fm−3. The measurement accurately constrains the density dependence of the symmetry energy of nuclear matter near saturation density, with implications for the size and composition of neutron stars.
-
Abstract We search for signatures of gravitational lensing in the gravitational-wave signals from compact binary coalescences detected by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) and Advanced Virgo during O3a, the first half of their third observing run. We study: (1) the expected rate of lensing at current detector sensitivity and the implications of a non-observation of strong lensing or a stochastic gravitational-wave background on the merger-rate density at high redshift; (2) how the interpretation of individual high-mass events would change if they were found to be lensed; (3) the possibility of multiple images due to strong lensing by galaxies ormore »Free, publicly-accessible full text available December 1, 2022
-
Abstract We present a search for continuous gravitational-wave emission due to r-modes in the pulsar PSR J0537–6910 using data from the LIGO–Virgo Collaboration observing run O3. PSR J0537–6910 is a young energetic X-ray pulsar and is the most frequent glitcher known. The inter-glitch braking index of the pulsar suggests that gravitational-wave emission due to r-mode oscillations may play an important role in the spin evolution of this pulsar. Theoretical models confirm this possibility and predict emission at a level that can be probed by ground-based detectors. In order to explore this scenario, we search for r-mode emission in the epochsmore »Free, publicly-accessible full text available November 1, 2022
-
Free, publicly-accessible full text available November 1, 2022
-
Free, publicly-accessible full text available October 1, 2022