Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We report an application of a pulsed ultraviolet (UV) laser (λ = 355 nm) in producing translucent Si solar cells. This process efficiently generates a densely packed microhole array on a fully fabricated Si P‐N junction solar cell in just a few minutes. Herein, prototype cells with a nominal microhole diameter of 23 μm with a spacing between 60 and 300 μm are fabricated. High‐resolution electron‐beam microscopy reveals that the UV laser beam introduces amorphized silicon oxide (SiOx) in proximity to the patterned microholes via localized heating in air. Quantitative photovoltaic (PV) analysis shows a decline in the open‐circuit voltage (Voc) and the fill factor (FF) of the cells with the increase in the microhole density, likely due to the P‐N junction damage during the laser beam irradiation. Despite the reduction inVocand FF, the solar cells retain a short‐circuit current density (Jsc) above 90% without post‐processing. The inherent microhole geometry associated with the laser beam profile allows multiple light scattering within the confined microhole structure, enhancing the translucency of the cells. While further development is required for optimization, these findings support the potential use of UV laser beams for fast and scalable production of translucent solar cells.more » « lessFree, publicly-accessible full text available November 1, 2025
-
Abstract Recent advances in device design and process optimizations have enabled the production of CdTe devices on flexible substrates, but the necessary high‐temperature processing (>450 °C) to recrystallize grains limits the use of alternative lightweight substrates. Here, a new synthesis method is reported to create a freestanding CdS/CdTe film by combining high‐temperature depositions (CdS/CdTe on Si/SiO2) and a simple lift‐off process in a water environment at room temperature. Analysis of the results indicate that the delamination is facilitated by the innate lattice mismatch as well as the presence of an unexpected Te‐rich layer (≈20 nm), which accumulates on the SiO2surface. High‐resolution electron microscopy and spectroscopy measurements confirm that the CdS/CdTe film is physically liberated from the substrate without leaving any residue, while also preserving their initial structural and compositional properties.more » « less
-
Abstract Leading photovoltaic technologies such as multicrystalline Si, CdTe, Cu(In,Ga)Se2, and lead halide perovskites are polycrystalline, yet achieve relatively high performance. At the moment polycrystalline photovoltaic technologies stand at a juncture where further advances in device performance and reliability necessitate additional characterization and modeling to include nanoscale property variations. Properties and implications of grain boundaries are previously studied, yet chemistry variations along individual grain boundaries and its implications are not yet fully explored. Here, the effects of bromine etching of CdTe absorber layers on the nanoscale chemistry are reported. Bromine etching is commonly used for improving CdTe back contacts, yet it removes both cadmium and chlorine along grain boundaries to depths closer to 1 µm. 2D device simulations reveal these composition modifications limit photovoltaic performance. Since grain boundaries and their intersections with surfaces and interfaces are universal to thin film photovoltaics, these findings call for similar studies in each of the photovoltaic technologies to further enable advances.more » « less