skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Yoon, I."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present a highly complete sample of broad-line (Type 1) QSOs out to z ∼ 3 selected by their mid-infrared colors, a method that is minimally affected by dust reddening. We remove host-galaxy emission from the spectra and fit for excess reddening in the residual QSOs, resulting in a Gaussian distribution of colors for unreddened (blue) QSOs, with a tail extending toward heavily reddened (red) QSOs, defined as having E ( B − V ) > 0.25. This radio-independent selection method enables us to compare red and blue QSO radio properties in both the FIRST (1.4 GHz) and VLASS (2–4 GHz) surveys. Consistent with recent results from optically selected QSOs from SDSS, we find that red QSOs have a significantly higher detection fraction and a higher fraction of compact radio morphologies at both frequencies. We employ radio stacking to investigate the median radio properties of the QSOs including those that are undetected in FIRST and VLASS, finding that red QSOs have significantly brighter radio emission and steeper radio spectral slopes compared with blue QSOs. Finally, we find that the incidence of red QSOs is strongly luminosity dependent, where red QSOs make up >40% of all QSOs at the highest luminosities. Overall, red QSOs comprise ∼40% of higher luminosity QSOs, dropping to only a few percent at lower luminosities. Furthermore, red QSOs make up a larger percentage of the radio-detected QSO population. We argue that dusty AGN-driven winds are responsible for both the obscuration as well as excess radio emission seen in red QSOs. 
    more » « less
  2. null (Ed.)
  3. Abstract

    We present the analysis of ∼100 pc scale compact radio continuum sources detected in 63 local (ultra)luminous infrared galaxies (U/LIRGs;LIR≥ 1011L), using FWHM ≲ 0.″1–0.″2 resolution 15 and 33 GHz observations with the Karl G. Jansky Very Large Array. We identify a total of 133 compact radio sources with effective radii of 8–170 pc, which are classified into four main categories—“AGN” (active galactic nuclei), “AGN/SBnuc” (AGN-starburst composite nucleus), “SBnuc” (starburst nucleus), and “SF” (star-forming clumps)—based on ancillary data sets and the literature. We find that “AGN” and “AGN/SBnuc” more frequently occur in late-stage mergers and have up to 3 dex higher 33 GHz luminosities and surface densities compared with “SBnuc” and “SF,” which may be attributed to extreme nuclear starburst and/or AGN activity in the former. Star formation rates (SFRs) and surface densities (ΣSFR) are measured for “SF” and “SBnuc” using both the total 33 GHz continuum emission (SFR ∼ 0.14–13Myr−1, ΣSFR∼ 13–1600Myr−1kpc−2) and the thermal free–free emission from Hiiregions (median SFRth∼ 0.4Myr−1,ΣSFRth44Myr−1kpc−2). These values are 1–2 dex higher than those measured for similar-sized clumps in nearby normal (non-U/LIRGs). The latter also have a much flatter median 15–33 GHz spectral index (∼−0.08) compared with “SBnuc” and “SF” (∼−0.46), which may reflect higher nonthermal contribution from supernovae and/or interstellar medium densities in local U/LIRGs that directly result from and/or lead to their extreme star-forming activities on 100 pc scales.

    more » « less
  4. Abstract Nuclear rings are excellent laboratories for studying intense star formation. We present results from a study of nuclear star-forming rings in five nearby normal galaxies from the Star Formation in Radio Survey (SFRS) and four local LIRGs from the Great Observatories All-sky LIRG Survey at sub-kiloparsec resolutions using Very Large Array high-frequency radio continuum observations. We find that nuclear ring star formation (NRSF) contributes 49%–60% of the total star formation of the LIRGs, compared to 7%–40% for the normal galaxies. We characterize a total of 57 individual star-forming regions in these rings, and find that with measured sizes of 10–200 pc, NRSF regions in the LIRGs have star formation rate (SFR) and Σ SFR up to 1.7 M ⊙ yr −1 and 402 M ⊙ yr −1 kpc −2 , respectively, which are about 10 times higher than in NRSF regions in the normal galaxies with similar sizes, and comparable to lensed high- z star-forming regions. At ∼100–300 pc scales, we estimate low contributions (<50%) of thermal free–free emission to total radio continuum emission at 33 GHz in the NRSF regions in the LIRGs, but large variations possibly exist at smaller physical scales. Finally, using archival sub-kiloparsec resolution CO ( J = 1–0) data of nuclear rings in the normal galaxies and NGC 7469 (LIRG), we find a large scatter in gas depletion times at similar molecular gas surface densities, which tentatively points to a multimodal star formation relation on sub-kiloparsec scales. 
    more » « less
  5. n Fall 2016, our NSF INCLUDES pilot grant enabled us to develop a partnership and network (SF CALL K–20 ALLIANCE) to design and align a K–20 pathway to CS careers by broadening participation (1) at the K–12 level; (2) across key transitions between K–12 and college and at the college level; and (3) by coordinating cross–sector stakeholder support for K–20 STEM student success. We are targeting K–20 for Broadening Participation (BP) to provide entry and reentry pathways for careers in computing. SF CALL also supports the development of student leadership groups to create inclusive communities of practice. Further supporting the transition from college to industry, SFSU has partnered with the SF Chamber of Commerce and the South SF city government to develop industry internships for CS students. This is on-going project that touches a very wide spectrum of inclusive computing education from K-20 to teacher preparation. In this paper, we focus on our efforts to build inclusive partnerships among all stakeholders and create a network able to achieve the given goals. 
    more » « less
  6. We aimed to build a new educational pathway that would provide basic training in computer science for women and students from underrepresented (UR) groups who otherwise may not take computer science classes in college. Specifically, this on-going project focused on creating a 2-year Computer Science (CS) program consisting of exciting new courses aimed at biology majors. Biology traditionally attracts large numbers of women, a significant number of students from UR groups, and has compelling needs for CS technology. The interdisciplinary program is training the next generation of innovators in the biological sciences who will be prepared to cross disciplinary boundaries. The program consists of the following: (1) computer science courses with content related to biology, (2) cohorts of students that progress through the program together, and (3) a small group peer mentoring environment, and (4) facilitated interdisciplinary research projects. Graduates from this program, referred to as "PINC" - Promoting INclusivity in Computing - will receive a “Minor in Computing Applications” in addition to their primary science degree in Biology. The program is now in its second year and thus far 60 students have participated. Among them, 73% are women and 51% are underrepresented minorities (URM). The majority of students in the PINC program stated that they would not have taken CS courses without the structured support of the PINC program. Here we present the data collected during this two year period as well as details about the Computing Application minor and programmatic components that are having a positive impact on student outcomes. 
    more » « less

    Tidal features in the outskirts of galaxies yield unique information about their past interactions and are a key prediction of the hierarchical structure formation paradigm. The Vera C. Rubin Observatory is poised to deliver deep observations for potentially millions of objects with visible tidal features, but the inference of galaxy interaction histories from such features is not straightforward. Utilizing automated techniques and human visual classification in conjunction with realistic mock images produced using the NewHorizon cosmological simulation, we investigate the nature, frequency, and visibility of tidal features and debris across a range of environments and stellar masses. In our simulated sample, around 80 per cent of the flux in the tidal features around Milky Way or greater mass galaxies is detected at the 10-yr depth of the Legacy Survey of Space and Time (30–31 mag arcsec−2), falling to 60 per cent assuming a shallower final depth of 29.5 mag arcsec−2. The fraction of total flux found in tidal features increases towards higher masses, rising to 10 per cent for the most massive objects in our sample (M⋆ ∼ 1011.5 M⊙). When observed at sufficient depth, such objects frequently exhibit many distinct tidal features with complex shapes. The interpretation and characterization of such features varies significantly with image depth and object orientation, introducing significant biases in their classification. Assuming the data reduction pipeline is properly optimized, we expect the Rubin Observatory to be capable of recovering much of the flux found in the outskirts of Milky Way mass galaxies, even at intermediate redshifts (z < 0.2).

    more » « less