skip to main content

Search for: All records

Creators/Authors contains: "Yoon, Peter H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In a recent paper [P. H. Yoon and G. Choe, Phys. Plasmas 28, 082306 (2021)], the weak turbulence theory for incompressible magnetohydrodynamics is formulated by employing the method customarily applied in the context of kinetic weak plasma turbulence theory. Such an approach simplified certain mathematical procedures including achieving the closure relationship. The formulation in the above-cited paper starts from the equations of incompressible magnetohydrodynamic (MHD) theory expressed via Elsasser variables. The derivation of nonlinear wave kinetic equation therein is obtained via a truncated solution at the second-order of iteration following the standard practice. In the present paper, the weak MHD turbulence theory is alternatively formulated by employing the pristine form of incompressible MHD equation rather than that expressed in terms of Elsasser fields. The perturbative expansion of the nonlinear momentum equation is carried out up to the third-order iteration rather than imposing the truncation at the second order. It is found that while the resulting wave kinetic equation is identical to that obtained in the previous paper cited above, the third-order nonlinear correction plays an essential role for properly calculating derived quantities such as the total and residual energies.

    Free, publicly-accessible full text available November 4, 2023
  2. Abstract Weakly turbulent processes that take place in plasmas are customarily formulated in terms of kinetic theory. However, owing to an inherent complexity associated with the problem, thus far the theory is fully developed largely for unmagnetized plasmas. In the present paper it is shown that a warm two fluid theory can successfully be employed in order to partially formulate the weak turbulence theory in spatially uniform plasma. Specifically, it is shown that the nonlinear wave-wave interaction, or decay processes, can be reproduced by the two-fluid formalism. The present finding shows that the same approach can in principle be extended to magnetized plasmas, which is a subject of future work.
  3. Understanding the nature and characteristics of high-frequency waves inside a flux rope may be important as the wave-particle interaction is important for charged-particle energization and the ensuing dissipation process. We analyze waves generated by an electron beam in a crater-shaped magnetic flux rope observed by MMS spacecraft on the dawnside tailward magnetopause. In this MMS observation, a depression of magnetic field, or a crater, of ∼100 km is located at the center of the magnetic flux rope of ∼650 km. There exist parallel and perpendicular electrostatic wave modes inside the depression of the magnetic field at the center of the flux rope, and they are distinguished by their locations and frequencies. The parallel mode exists at the center of the magnetic depression and its power spectrum peaks below F ce (electron cyclotron frequency). In contrast, the perpendicular mode exists in the outer region associated with the magnetic depression, and its power spectrum peaks near F ce . The linear analysis of kinetic instability using a generalized dispersion solver shows that the parallel mode can be generated by the electron beam of 5,000 km/s. They can thermalize electrons ≲100 eV effectively. However, the generation mechanism of the perpendicular mode is not clear yet, which requiresmore »further study.« less
  4. Ion holes refer to the phase-space structures where the trapped ion density is lower at the center than at the rim. These structures are commonly observed in collisionless plasmas, such as the Earth’s magnetosphere. This paper investigates the role of multiple parameters in the generation and structure of ion holes. We find that the ion-to-electron temperature ratio and the background plasma distribution function of the species play a pivotal role in determining the physical plausibility of ion holes. It is found that the range of width and amplitude that defines the existence of ion holes splits into two separate domains as the ion temperature exceeds that of the electrons. Additionally, the present study reveals that the ion holes formed in a plasma with ion temperature higher than that of the electrons have a hump at its center.
  5. Free, publicly-accessible full text available December 21, 2022
  6. ABSTRACT Coherent bipolar electric field structures, ubiquitously found in various space and astrophysical plasma environments, play an important role in plasma transport and particle acceleration. Most of the studies found in the literature about them pertain to bipolar structures with positive potentials interpreted in terms of electron holes. Magnetospheric Multiscale spacecraft have recently observed a series of coherent electric field structures with negative potential in the Earth’s bow shock region, which are interpreted as ion holes. The existing theoretical models of ion holes are inadequate because they entail stringent conditions on the ratio of ion to electron temperature. This letter presents a new theory that provides a satisfactory explanation to these observations. A salient point is that this letter incorporates the electron dynamics in the theoretical formalism, which removes ambiguities associated with existing theories, thus showing that the new theory for ion holes may be widely applicable for space and astrophysical plasmas.