skip to main content

Search for: All records

Creators/Authors contains: "Yoshida, Ruriko"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In this research, we investigate a tropical principal component analysis (PCA) as a best-fit Stiefel tropical linear space to a given sample over the tropical projective torus for its dimensionality reduction and visualization. Especially, we characterize the best-fit Stiefel tropical linear space to a sample generated from a mixture of Gaussian distributions as the variances of the Gaussians go to zero. For a single Gaussian distribution, we show that the sum of residuals in terms of the tropical metric with the max-plus algebra over a given sample to a fitted Stiefel tropical linear space converges to zero by giving an upper bound for its convergence rate. Meanwhile, for a mixtures of Gaussian distribution, we show that the best-fit tropical linear space can be determined uniquely when we send variances to zero. We briefly consider the best-fit topical polynomial as an extension for the mixture of more than two Gaussians over the tropical projective space of dimension three. We show some geometric properties of these tropical linear spaces and polynomials.

    more » « less
  2. Abstract

    We study the behavior of phylogenetic tree shapes in the tropical geometric interpretation of tree space. Tree shapes are formally referred to as tree topologies; a tree topology can also be thought of as a tree combinatorial type, which is given by the tree’s branching configuration and leaf labeling. We use the tropical line segment as a framework to define notions of variance as well as invariance of tree topologies: we provide a combinatorial search theorem that describes all tree topologies occurring along a tropical line segment, as well as a setting under which tree topologies do not change along a tropical line segment. Our study is motivated by comparison to the moduli space endowed with a geodesic metric proposed by Billera, Holmes, and Vogtmann (referred to as BHV space); we consider the tropical geometric setting as an alternative framework to BHV space for sets of phylogenetic trees. We give an algorithm to compute tropical line segments which is lower in computational complexity than the fastest method currently available for BHV geodesics and show that its trajectory behaves more subtly: while the BHV geodesic traverses the origin for vastly different tree topologies, the tropical line segment bypasses it.

    more » « less