skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Younas, Nosheen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding and controlling spin relaxation in molecular qubits is essential for developing chemically tunable quantum information platforms. We present a first-principles-parametrized analytical framework for evaluating spin relaxation dynamics in vanadyl phthalocyanine (VOPc) and its oxygenated derivative, VOPc(OH)8. By expanding the spin Hamiltonian in vibrational normal modes and computing both linear and quadratic spin–phonon coupling tensors via finite differences of the g-tensor, we construct a relaxation tensor that enters a Lindblad-type master equation, capturing both direct (one-phonon) and Raman (two-phonon) processes. A mode-resolved analysis reveals that relaxation is funneled through only a handful of low-frequency vibrations: in VOPc, three out-of-plane distortions of the phthalocyanine ring and V–O unit dominate, whereas in VOPc(OH)8, the additional oxygens shift these modes downward and suppress two of them, leaving a single strongly coupled mode as the main decoherence pathway. Both longitudinal (T1) and transverse (T2) relaxation are governed by this same set of vibrational modes, indicating that coherence loss is controlled by a common microscopic mechanism. This mode-selective picture offers a design strategy for engineering longer-lived molecular qubits. 
    more » « less
    Free, publicly-accessible full text available December 14, 2026