Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Objective: Accurate, non-invasive methods for estimating joint and muscle physiological states have the potential to greatly enhance control of wearable devices during real-world ambulation. Traditional modeling approaches and current estimation methods used to predict muscle dynamics often rely on complex equipment or computationally intensive simulations and have difficulty estimating across a broad spectrum of tasks or subjects. Methods: Our approach used deep learning (DL) models trained on kinematic inputs to estimate internal physiological states at the knee, including moment, power, velocity, and force. We assessed each model's performance against ground truth labels from both a commonly used, standard OpenSim musculoskeletal model without EMG (static optimization) and an EMG-informed method (CEINMS), across 28 different cyclic and noncyclic tasks. Results: EMG provided no benefit for joint moment/power estimation (e.g., biological moment), but was critical for estimating muscle states. Models trained with EMG-informed labels but without EMG as an input to the DL system significantly outperformed models trained without EMG (e.g., 33.7% improvement for muscle moment estimation) (p < 0.05). Models that included EMG-informed labels and EMG as a model input demonstrated even higher performance (49.7% improvement for muscle moment estimation) (p < 0.05), but require the availability of EMG during model deployment, which may be impractical. Conclusion/Significance: While EMG information is not necessary for estimating joint level states, there is a clear benefit during muscle level state estimation. Our results demonstrate excellent tracking of these states with EMG included only during training, highlighting the practicality of real-time deployment of this approach.more » « lessFree, publicly-accessible full text available June 5, 2026
-
Free, publicly-accessible full text available June 1, 2026
-
Lower-limb exoskeletons have the potential to transform the way we move1,2,3,4,5,6,7,8,9,10,11,12,13,14, but current state-of-the-art controllers cannot accommodate the rich set of possible human behaviours that range from cyclic and predictable to transitory and unstructured. We introduce a task-agnostic controller that assists the user on the basis of instantaneous estimates of lower-limb biological joint moments from a deep neural network. By estimating both hip and knee moments in-the-loop, our approach provided multi-joint, coordinated assistance through our autonomous, clothing-integrated exoskeleton. When deployed during 28 activities, spanning cyclic locomotion to unstructured tasks (for example, passive meandering and high-speed lateral cutting), the network accurately estimated hip and knee moments with an average R2 of 0.83 relative to ground truth. Further, our approach significantly outperformed a best-case task classifier-based method constructed from splines and impedance parameters. When tested on ten activities (including level walking, running, lifting a 25 lb (roughly 11 kg) weight and lunging), our controller significantly reduced user energetics (metabolic cost or lower-limb biological joint work depending on the task) relative to the zero torque condition, ranging from 5.3 to 19.7%, without any manual controller modifications among activities. Thus, this task-agnostic controller can enable exoskeletons to aid users across a broad spectrum of human activities, a necessity for real-world viability.more » « lessFree, publicly-accessible full text available November 14, 2025
-
Robotic lower-limb exoskeletons can augment human mobility, but current systems require extensive, context-specific considerations, limiting their real-world viability. Here, we present a unified exoskeleton control framework that autonomously adapts assistance on the basis of instantaneous user joint moment estimates from a temporal convolutional network (TCN). When deployed on our hip exoskeleton, the TCN achieved an average root mean square error of 0.142 newton-meters per kilogram across 35 ambulatory conditions without any user-specific calibration. Further, the unified controller significantly reduced user metabolic cost and lower-limb positive work during level-ground and incline walking compared with walking without wearing the exoskeleton. This advancement bridges the gap between in-lab exoskeleton technology and real-world human ambulation, making exoskeleton control technology viable for a broad community.more » « less
-
Objective: Real-time measurement of biological joint moment could enhance clinical assessments and generalize exoskeleton control. Accessing joint moments outside clinical and laboratory settings requires harnessing non-invasive wearable sensor data for indirect estimation. Previous approaches have been primarily validated during cyclic tasks, such as walking, but these methods are likely limited when translating to non-cyclic tasks where the mapping from kinematics to moments is not unique. Methods: We trained deep learning models to estimate hip and knee joint moments from kinematic sensors, electromyography (EMG), and simulated pressure insoles from a dataset including 10 cyclic and 18 non-cyclic activities. We assessed estimation error on combinations of sensor modalities during both activity types. Results: Compared to the kinematics-only baseline, adding EMG reduced RMSE by 16.9% at the hip and 30.4% at the knee (p<0.05) and adding insoles reduced RMSE by 21.7% at the hip and 33.9% at the knee (p<0.05). Adding both modalities reduced RMSE by 32.5% at the hip and 41.2% at the knee (p<0.05) which was significantly higher than either modality individually (p<0.05). All sensor additions improved model performance on non-cyclic tasks more than cyclic tasks (p<0.05). Conclusion: These results demonstrate that adding kinetic sensor information through EMG or insoles improves joint moment estimation both individually and jointly. These additional modalities are most important during non-cyclic tasks, tasks that reflect the variable and sporadic nature of the real-world. Significance: Improved joint moment estimation and task generalization is pivotal to developing wearable robotic systems capable of enhancing mobility in everyday life.more » « less
-
The field of wearable robotics has made significant progress toward augmenting human functions from multimodal ambulation to manual lifting tasks. However, most of these systems are designed to be task-specific and only focus on a single type of movement (e.g., ambulation). In this work, we design, fabricate, and characterize a versatile hip exoskeleton testbed for lifting and ambulation tasks. The exoskeleton testbed is actuated with custom-built quasidirect drive actuators. We produce an orthotic interface to transmit high torques and assemble a custom mechatronic control system for the exoskeleton testbed. We also detail controllers for level ground walking, incline walking, and symmetric knee to waist lifting. We quantify the actuator torque tracking performance quantified through benchtop and human experiments. During knee-to-waist cyclic lifting, the powered condition exhibited a 16.7% reduction in net metabolic cost compared to the no exoskeleton condition (three subjects). For additional tasks (inclined walking, level-walking), the device provided metabolic reductions when compared with the unpowered case (single subject). These testbed results illustrate the potential for versatile hip assistance and can be used to design future optimized devices.more » « less
-
Estimating human joint moments using wearable sensors has utility for personalized health monitoring and generalized exoskeleton control. Data-driven models have potential to map wearable sensor data to human joint moments, even with a reduced sensor suite and without subject-specific calibration. In this study, we quantified the RMSE and R 2 of a temporal convolutional network (TCN), trained to estimate human hip moments in the sagittal plane using exoskeleton sensor data (i.e., a hip encoder and thigh- and pelvis-mounted inertial measurement units). We conducted three analyses in which we iteratively retrained the network while: 1) varying the input sequence length of the model, 2) incorporating noncausal data into the input sequence, thus delaying the network estimates, and 3) time shifting the labels to train the model to anticipate (i.e., predict) human hip moments. We found that 930 ms of causal input data maintained model performance while minimizing input sequence length (validation RMSE and R 2 of 0.141±0.014 Nm/kg and 0.883±0.025, respectively). Further, delaying the model estimate by up to 200 ms significantly improved model performance compared to the best causal estimators (p<0.05), improving estimator fidelity in use cases where delayed estimates are acceptable (e.g., in personalized health monitoring or diagnoses). Finally, we found that anticipating hip moments further in time linearly increased model RMSE and decreased R 2 (p<0.05); however, performance remained strong (R 2 >0.85) when predicting up to 200 ms ahead.more » « less
-
Proportional myoelectric controller (PMC) has been one of the most common assistance strategies for robotic exoskeletons due to its ability to modulate assistance level directly based on the user's muscle activation. However, existing PMC strategies (static or user-adaptive) scale torque linearly with muscle activation level and fail to address complex and non-linear mapping between muscle activation and joint torque. Furthermore, previously presented adaptive PMC strategies do not allow for environmental changes (such as changes in ground slopes) and modulate the system's assistance level over many steps. In this work, we designed a novel user- and environment-adaptive PMC for a knee exoskeleton that modulates the peak assistance level based on the slope level during locomotion. We recruited nine able-bodied adults to test and compare the effects of three different PMC strategies (static, user-adaptive, and user- and environment-adaptive) on the user's metabolic cost and the knee extensor muscle activation level during load-carriage walking (6.8 kg) in three inclination settings (0°, 4.5°, and 8.5°). The results showed that only the user- and environment-adaptive PMC was effective in significantly reducing user's metabolic cost (5.8% reduction) and the knee extensor muscle activation (19% reduction) during 8.5° incline walking compared to the unpowered condition while other PMCs did not have as large of an effect. This control framework highlights the viability of implementing an assistance paradigm that can dynamically adjust to the user's biological demand, allowing for a more personalized assistance paradigm.more » « less
-
Abstract Series elastic actuators (SEAs) are increasingly popular in wearable robotics due to their high fidelity closed-loop torque control capability. Therefore, it has become increasingly important to characterize its performance when used in dynamic environments. However, the conventional design approach does not fully capture the complexity of the entire exoskeleton system. These limitations stem from identifying design criteria with inadequate biomechanics data, utilizing an off-the-shelf user interface, and applying a benchtop-based proportional-integral-derivative control for actual low-level torque tracking. While this approach shows decent actuator performance, it does not consider human factors such as the dynamic back-driving nature of human-exoskeleton systems as well as soft human tissue dampening during the load transfer. Using holistic design guidelines to improve the SEA-based exoskeleton performance during dynamic locomotion, our final system has an overall mass of 4.8 kg (SEA mass of 1.1 kg) and can provide a peak joint torque of 108 Nm with a maximum velocity of 5.2 rad/s. Additionally, we present a user state-based feedforward controller to further improve the low-level torque tracking for diverse walking conditions. Our study results provide future exoskeleton designers with a foundation to further improve SEA-based exoskeleton’s torque tracking response for maximizing human-exoskeleton performance during dynamic locomotion.more » « less