Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cinnamylamines make-up many important drugs that target G protein-coupled receptors. While 3,3-diarylallylamines can be prepared via existing synthetic methods, these often require poorly-selective Wittig addition to unsymmetrical ketones, and multistep sequences thereafter to reach the allylamine product. Methods that make use of direct aryl addition to N -protected cinnamylamines via a Mizoroki–Heck pathway are known, however, unprotected cinnamylamines are sensitive to a mixture of C–H activation and Mizoroki–Heck arylation under Pd-catalysed arylation conditions using aryl iodides. This leads to a decrease in the trans / cis selectivity that can be achieved under these reaction conditions. By reimagining the reaction and using aryl boronic acids, we have herein demonstrated how in many cases the yield and E / Z selectivity can be improved. The in situ -formed active catalyst is more sensitive under these conditions, and was observed to shut down at elevated temperatures.more » « less
-
The transition metal-catalyzed Mizoroki–Heck reaction is a powerful method to synthesize C–C bonds, allowing access to several important pharmaceuticals. Traditionally free amines have not been compatible with these approaches due to oxidation of the amine by the transition metal or other side reactions. However, the functionalization of unprotected allylamines is particularly attractive due to their prevalence in various biologically active molecules. Herein we report the palladium-catalyzed selective monoarylation of free allylamines using aryl iodides. The strategy works on primary, secondary, and tertiary amines, making it very general. Our monoarylation method is scalable and works on aryl iodides with a variety of substituted arene or heterocycle motifs, including chromophoric substrates.more » « less
-
Abstract Herein, we report the palladium‐catalyzed direct arylation of unactivated aliphatic C−H bonds in free primary amines. This method takes advantage of an
exo ‐imine‐type directing group (DG) that can be generated and removed in situ. A range of unprotected aliphatic amines are suitable substrates, undergoing site‐selective arylation at the γ‐position. Methyl as well as cyclic and acyclic methylene groups can be activated. Furthermore, when aniline‐derived substrates were used, preliminary success with δ‐C−H arylation was achieved. The feasibility of using the DG component in a catalytic fashion was also demonstrated.