skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Young, T J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dielectric anisotropy in ice alters the propagation of polarized radio waves, so polarimetric radar sounding can be used to survey anisotropic properties of ice masses. Ice anisotropy is either intrinsic, associated with ice‐crystal orientation fabric (COF), or extrinsic, associated with material heterogeneity, such as bubbles, fractures, and directional roughness at the glacier bed. Anisotropy develops through a history of snow deposition and ice flow, and the consequent mechanical properties of anisotropy then feed back to influence ice flow. Constraints on anisotropy are therefore important for understanding ice dynamics, ice‐sheet history, and future projections of ice flow and associated sea‐level change. Radar techniques, applied using ground‐based, airborne, or spaceborne instruments, can be deployed more quickly and over a larger area than either direct sampling, via ice‐core drilling, or analogous seismic techniques. Here, we review the physical nature of dielectric anisotropy in glacier ice, the general theory for radio‐wave propagation through anisotropic media, polarimetric radar instruments and survey strategies, and the extent of applications in glacier settings. We close by discussing future directions, such as polarimetric interpretations outside COF, planetary and astrophysical applications, innovative survey geometries, and polarimetric profiling. We argue that the recent proliferation in polarimetric subsurface sounding radar marks a critical inflection, since there are now several approaches for data collection and processing. This review aims to guide the expanding polarimetric user base to appropriate techniques so they can address new and existing challenges in glaciology, such as constraining ice viscosity, a critical control on ice flow and future sea‐level change. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Abstract In airborne radargrams, undulating periodic patterns in amplitude that overprint traditional radiostratigraphic layering are occasionally observed, however, they have yet to be analyzed from a geophysical or glaciological perspective. We present evidence supported by theory that these depth‐periodic patterns are consistent with a modulation of the received radar power due to the birefringence of polar ice, and therefore indicate the presence of bulk fabric anisotropy. Here, we investigate the periodic component of birefringence‐induced radar power recorded in airborne radar data at the eastern shear margin of Thwaites Glacier and quantify the lateral variation in azimuthal fabric strength across this margin. We find the depth variability of birefringence periodicity crossing the shear margin to be a visual expression of its shear state and its development, which appears consistent with present‐day ice deformation. The morphology of the birefringent patterns is centered at the location of maximum shear and observed in all cross‐margin profiles, consistent with predictions of ice fabric when subjected to simple shear. The englacial fabric appears stronger inside the ice stream than outward of the shear margin. The detection of birefringent periodicity from non‐polarimetric radargrams presents a novel use of subsurface radar to constrain lateral variations in fabric strength, locate present and past shear margins, and characterize the deformation history of polar ice sheets. 
    more » « less