Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 10, 2024
-
Abstract Study Analysis Group 21 (SAG21) of NASA’s Exoplanet Exploration Program Analysis Group was organized to study the effect of stellar contamination on space-based transmission spectroscopy, a method for studying exoplanetary atmospheres by measuring the wavelength-dependent radius of a planet as it transits its star. Transmission spectroscopy relies on a precise understanding of the spectrum of the star being occulted. However, stars are not homogeneous, constant light sources but have temporally evolving photospheres and chromospheres with inhomogeneities like spots, faculae, plages, granules, and flares. This SAG brought together an interdisciplinary team of more than 100 scientists, with observers and theorists from the heliophysics, stellar astrophysics, planetary science, and exoplanetary atmosphere research communities, to study the current research needs that can be addressed in this context to make the most of transit studies from current NASA facilities like Hubble Space Telescope and JWST. The analysis produced 14 findings, which fall into three science themes encompassing (i) how the Sun is used as our best laboratory to calibrate our understanding of stellar heterogeneities (‘The Sun as the Stellar Benchmark’), (ii) how stars other than the Sun extend our knowledge of heterogeneities (‘Surface Heterogeneities of Other Stars’), and (iii) how to incorporate information gathered for the Sun and other stars into transit studies (‘Mapping Stellar Knowledge to Transit Studies’). In this invited review, we largely reproduce the final report of SAG21 as a contribution to the peer-reviewed literature.
-
Abstract The Transiting Exoplanet Survey Satellite (TESS) mission searches for new exoplanets. The observing strategy of TESS results in high-precision photometry of millions of stars across the sky, allowing for detailed asteroseismic studies of individual systems. In this work, we present a detailed asteroseismic analysis of the giant star HD 76920 hosting a highly eccentric giant planet (
e = 0.878) with an orbital period of 415 days, using five sectors of TESS light curve that cover around 140 days of data. Solar-like oscillations in HD 76920 are detected around 52μ Hz by TESS for the first time. By utilizing asteroseismic modeling that takes classical observational parameters and stellar oscillation frequencies as constraints, we determine improved measurements of the stellar mass (1.22 ± 0.11M ⊙), radius (8.68 ± 0.34R ☉), and age (5.2 ± 1.4 Gyr). With the updated parameters of the host star, we update the semimajor axis and mass of the planet asa = 1.165 ± 0.035 au and . With an orbital pericenter of 0.142 ± 0.005 au, we confirm that the planet is currently far away enough from the star to experience negligible tidal decay until being engulfed in the stellar envelope. We also confirm that this event will occur within about 100 Myr, depending on the stellar model used. -
Secondary formamides are widely encountered in biology and exist as mixtures of both cis and trans isomers. Here, we assess hydrophilicity differences between isomeric formamides through direct competition experiments. Formamides bearing long aliphatic chains were sequestered in a water-soluble molecular container having a hydrophobic cavity with an end open to the aqueous medium. NMR spectroscopic experiments reveal a modest preference (<1 kcal/mol) for aqueous solvation of the trans formamide terminals over the cis isomers. With diformamides, the supramolecular approach allows staging of intramolecular competition between short-lived species with subtle differences in hydrophobic properties.more » « less