skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yu, Sijie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A subclass of early impulsive solar flares, cold flares, was proposed to represent a clean case, where the release of the free magnetic energy (almost) entirely goes to the acceleration of the nonthermal electrons, while the observed thermal response is entirely driven by the nonthermal energy deposition to the ambient plasma. This paper studies one more example of a cold flare, which was observed by a unique combination of instruments. In particular, this is the first cold flare observed with the Expanded Owens Valley Solar Array and, thus, for which the dynamical measurement of the coronal magnetic field and other parameters at the flare site is possible. With these new data, we quantified the coronal magnetic field at the flare site but did not find statistically significant variations of the magnetic field within the measurement uncertainties. We estimated that the uncertainty in the corresponding magnetic energy exceeds the thermal and nonthermal energies by an order of magnitude; thus, there should be sufficient free energy to drive the flare. We discovered a very prominent soft-hard-soft spectral evolution of the microwave-producing nonthermal electrons. We computed energy partitions and concluded that the nonthermal energy deposition is likely sufficient to drive the flare thermal response similarly to other cold flares. 
    more » « less
    Free, publicly-accessible full text available July 29, 2026
  2. Abstract Recent observations and simulations indicate that solar flares undergo extremely complex 3D evolution, making 3D particle transport models essential for understanding electron acceleration and interpreting flare emissions. In this study, we investigate this problem by solving Parker’s transport equation with 3D MHD simulations of solar flares. By examining energy conversion in the 3D system, we evaluate the roles of different acceleration mechanisms, including reconnection current sheet (CS), termination shock (TS), and supra-arcade downflows (SADs). We find that large-amplitude turbulent fluctuations are generated and sustained in the 3D system. The model results demonstrate that a significant number of electrons are accelerated to hundreds of keV and even a few MeV, forming power-law energy spectra. These energetic particles are widely distributed, with concentrations at the TS and in the flare looptop region, consistent with results derived from recent hard X-ray (HXR) and microwave (MW) observations. By selectively turning particle acceleration on or off in specific regions, we find that the CS and SADs effectively accelerate electrons to several hundred keV, while the TS enables further acceleration to MeV. However, no single mechanism can independently account for the significant number of energetic electrons observed. Instead, the mechanisms work synergistically to produce a large population of accelerated electrons. Our model provides spatially and temporally resolved electron distributions in the whole flare region and at the flare footpoints, enabling synthetic HXR and MW emission modeling for comparison with observations. These results offer important insights into electron acceleration and transport in 3D solar flare regions. 
    more » « less
    Free, publicly-accessible full text available September 29, 2026
  3. Abstract Solar flare above-the-loop-top (ALT) regions are vital for understanding solar eruptions and fundamental processes in plasma physics. Recent advances in three-dimensional (3D) magnetohydrodynamic (MHD) simulations have revealed unprecedented details on turbulent flows and MHD instabilities in flare ALT regions. Here, for the first time, we examine the observable anisotropic properties of turbulent flows in ALT by applying a flow-tracking algorithm on narrow-band extreme-ultraviolet images that are observed from the face-on viewing perspective. First, the results quantitatively confirm the previous observation that vertical motions dominate and that the anisotropic flows are widely distributed in the entire ALT region with the contribution from both upflows and downflows. Second, the anisotropy shows height-dependent features, with the most substantial anisotropy appearing at a certain middle height in ALT, which agrees well with the MHD modeling results where turbulent flows are caused by Rayleigh–Taylor-type instabilities in the ALT region. Finally, our finding suggests that supra-arcade downflows (SADs), the most prominently visible dynamical structures in ALT regions, are only one aspect of turbulent flows. Among these turbulent flows, we also report the antisunward-moving underdense flows that might develop due to MHD instabilities, as suggested by previous 3D flare models. Our results indicate that the entire flare fan displays group behavior of turbulent flows where the observational bright spikes and relatively dark SADs exhibit similar anisotropic characteristics. 
    more » « less
    Free, publicly-accessible full text available April 25, 2026
  4. How impulsive solar energetic particle (SEP) events are produced by magnetic-reconnection-driven processes during solar flares remains an outstanding question. Here we report a short-duration SEP event associated with an X-class eruptive flare on 2021 July 3, using a combination of remote sensing observations and in situ measurements. The in situ SEPs were recorded by multiple spacecraft including the Parker Solar Probe. The hard X-ray (HXR) light curve exhibits two impulsive periods. The first period is characterized by a single peak with a rapid rise and decay, while the second period features a more gradual HXR light curve with a harder spectrum. Such observation is consistent with in situ measurements: the energetic electrons were first released during the early impulsive phase when the eruption was initiated. The more energetic in situ electrons were released several minutes later during the second period of the impulsive phase when the eruption was well underway. This second period of energetic electron acceleration also coincides with the release of in situ energetic protons and the onset of an interplanetary type III radio burst. We conclude that these multimessenger observations favor a two-phase particle acceleration scenario: the first, less energetic electron population was produced during the initial reconnection that triggers the flare eruption, and the second, more energetic electron population was accelerated in the region above the loop-top below a well-developed, large-scale reconnection current sheet induced by the eruption. 
    more » « less
    Free, publicly-accessible full text available April 3, 2026
  5. pyAMPP Premature Release This is an early preview of pyAMPP – the Python Automatic Model Production Pipeline for solar coronal modeling. Expect things to change quickly as we continue development! What's included: Core functionality for generating 3D solar atmosphere models Tools to download HMI and (optionally) AIA data Magnetic field extrapolations (Potential/NLFFF) Synthetic plasma and chromospheric model generation Interactive GUIs: gxampp (time/coord selector) and gxbox (modeling & visualization) Documentation: pyampp.readthedocs.io Getting Started pip install -U pyampp After installing, launch the GUIs with: gxampp # Time & location selector gxbox ... # Run the modeling viewer with your options Heads up: • This is a very early release—features may be missing or change without warning. • Please report bugs or suggestions via issues. Copyright (c) 2024, SUNCAST team. Released under the 3-clause BSD license. 
    more » « less
  6. Abstract We analyze high-resolution observations of an X-1.0 white-light flare, triggered by a filament eruption, on 2022 October 2. The full process of filament formation and subsequent eruption was captured in the Hαpassband by the Visible Imaging Spectrograph (VIS) on board the Goode Solar Telescope (GST) within its center field of view. White-light emissions appear in flare ribbons following the filament eruption and Hαribbon brightening. GST Broadband Filter Imager data show that the continuum intensity, as compared to the nearby quiet-Sun area, has increased by up to 20% in the photospheric TiO band around 7057 Å. The Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory reported 10% contrast enhancement in the continuum near Fei6173 Å line. The separation motion of two white-light kernels is recorded by the high-cadence GST/TiO images and is well accompanied by the motion of the VIS Hαflare ribbon leading edge. One kernel, located in a 150 Gauss field within a granulation area, exhibited an average apparent motion speed of 55 km s−1, which is the highest average speed ever reported. The other kernel drifted at 9 km s−1in an 800 Gauss magnetic field area. Hard X-ray (HXR) emissions reaching up to 300 keV have been observed for this flare. The simultaneous occurrence of high-cadence HXR, microwave, and white-light emissions strongly suggests that the energetic particles from the flare directly contribute to the heating. The inverted HXR energy flux density corresponding to 10% TiO brightening is 2.07 ± 0.23 × 1011erg cm−2s−1during the flare peak. 
    more » « less
  7. The standard flare model, despite its success, is limited in comprehensively explaining the various processes involving nonthermal particles. One such missing ingredient is a detailed understanding of the various processes involved during the transport of accelerated electrons from their site of acceleration to different parts of the flare region. Here we use simultaneous radio and X-ray observations from the Expanded Owens Valley Solar Array and the Spectrometer/Telescope for Imaging X-rays on board the Solar Orbiter, respectively, from two distinct viewing perspectives, to study the electron transport processes. Through detailed spectral modeling of the coronal source using radio data and footpoint sources using X-ray spectra, we compare the nonthermal electron distribution at the coronal and footpoint sources. We find that the flux of the nonthermal electrons precipitated at the footpoint is an order of magnitude greater than that trapped in the looptop, consistent with earlier works that primarily used X-ray for their studies. In addition, we find that the electron spectral indices obtained from X-ray footpoints are significantly softer than the spectral hardness of the nonthermal electron distribution in the corona. We interpret these differences based on transport effects and the difference in sensitivity of microwave and X-ray observations to different regimes of electron energies. Such an understanding is crucial for leveraging different diagnostic methods of nonthermal electrons simultaneously to achieve a more comprehensive understanding of the electron acceleration and transport processes of solar flares. 
    more » « less
  8. Aims.The aim of this work is to identify the mechanism driving pulsations in hard X-ray (HXR) and microwave emission during solar flares. Using combined HXR and microwave observations from Solar Orbiter/STIX and EOVSA, we investigate an X1.3 GOES class flare, 2022-03-30T17:21:00, which displays pulsations on timescales evolving from ∼7 s in the impulsive phase to ∼35 s later in the flare. Methods.We analysed the temporal, spatial, and spectral evolution of the HXR and microwave pulsations during the impulsive phase of the flare. We reconstructed images for individual peaks in the impulsive phase and performed spectral fitting at high cadence throughout the first phase of pulsations. Results.Our imaging analysis demonstrates that the HXR and microwave emission originates from multiple sites along the flare ribbons. The brightest sources and the location of the emission change in time. Through HXR spectral analysis, the electron spectral index is found to be anti-correlated with the HXR flux, showing a “soft-hard-soft” spectral index evolution for each pulsation. The timing of the associated filament eruption coincides with the early impulsive phase. Conclusions.Our results indicate that periodic acceleration and/or injection of electrons from multiple sites along the flare arcade is responsible for the pulsations observed in HXR and microwave emission. The evolution of pulsation timescales is likely a result of changes in the 3D magnetic field configuration over time related to the associated filament eruption. 
    more » « less
  9. Abstract Where and how flares efficiently accelerate charged particles remains an unresolved question. Recent studies revealed that a “magnetic bottle” structure, which forms near the bottom of a large-scale reconnection current sheet above the flare arcade, is an excellent candidate for confining and accelerating charged particles. However, further understanding its role requires linking the various observational signatures to the underlying coupled plasma and particle processes. Here we present the first study combining multiwavelength observations with data-informed macroscopic magnetohydrodynamics and particle modeling in a realistic eruptive flare geometry. The presence of an above-the-loop-top magnetic bottle structure is strongly supported by the observations, which feature not only a local minimum of magnetic field strength but also abruptly slowing plasma downflows. It also coincides with a compact above-the-loop-top hard X-ray source and an extended microwave source that bestrides the flare arcade. Spatially resolved spectral analysis suggests that nonthermal electrons are highly concentrated in this region. Our model returns synthetic emission signatures that are well matched to the observations. The results suggest that the energetic electrons are strongly trapped in the magnetic bottle region due to turbulence, with only a small fraction managing to escape. The electrons are primarily accelerated by plasma compression and facilitated by a fast-mode termination shock via the Fermi mechanism. Our results provide concrete support for the magnetic bottle as the primary electron acceleration site in eruptive solar flares. They also offer new insights into understanding the previously reported small population of flare-accelerated electrons entering interplanetary space. 
    more » « less