Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract By dissipating energy and generating mixing, internal tides (ITs) are important for the climatological evolution of the ocean. Our understanding of this class of ocean variability is however hindered by the rarity of observations capable of capturing ITs with global coverage. The data provided by the Global Drifter Program (GDP) offer high temporal resolution and quasi-global coverage, thus bringing promising perspectives. However, due to their inherent drifting nature, these instruments provide a distorted view of the IT signal. By theoretically rationalizing this distortion and leveraging a massive synthetic drifter numerical simulation, we propose a global metric converting semi-diurnal IT energy levels from GDP data to levels comparable to Eulerian datasets (two numerical simulations, and a satellite altimetry IT atlas). We find that the simulation with a dedicated focus on IT representation is the one where the converted Lagrangian levels perform best. This supports renewed efforts in the concurrent numerical modeling of ITs/ocean circulation. The substantial deficit of energy in the IT atlas highlights the inability for altimetric estimates to measure incoherent and fine-scale ITs and strongly supports the need to isolate ITs signature in the data collected by the new wide-swath altimetry mission SWOT.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Abstract The surface kinetic energy of a 1/48° global ocean simulation and its distribution as a function of frequency and location are compared with the one estimated from 15,329 globally distributed surface drifter observations at hourly resolution. These distributions follow similar patterns with a dominant low‐frequency component and well‐defined tidal and near‐inertial peaks globally. Quantitative differences are identified with deficits of low‐frequency energy near the equator (factor 2) and at near‐inertial frequencies (factor 3) and an excess of energy at semidiurnal frequencies (factor 4) for the model. Owing to its hourly resolution and its near‐global spatial coverage, the array of surface drifters is an invaluable tool to evaluate the realism of tide‐resolving high‐resolution ocean simulations used in observing system simulation experiments. Sources of bias between model and drifter data are discussed, and associated leads for future work highlighted.more » « less
-
Abstract The geographical variability, frequency content, and vertical structure of near‐surface oceanic kinetic energy (KE) are important for air‐sea interaction, marine ecosystems, operational oceanography, pollutant tracking, and interpreting remotely sensed velocity measurements. Here, KE in high‐resolution global simulations (HYbrid Coordinate Ocean Model; HYCOM, and Massachusetts Institute of Technology general circulation model; MITgcm), at the sea surface (0 m) and at 15 m, are compared with KE from undrogued and drogued surface drifters, respectively. Global maps and zonal averages are computed for low‐frequency (<0.5 cpd), near‐inertial, diurnal, and semidiurnal bands. Both models exhibit low‐frequency equatorial KE that is low relative to drifter values. HYCOM near‐inertial KE is higher than in MITgcm, and closer to drifter values, probably due to more frequently updated atmospheric forcing. HYCOM semidiurnal KE is lower than in MITgcm, and closer to drifter values, likely due to inclusion of a parameterized topographic internal wave drag. A concurrent tidal harmonic analysis in the diurnal band demonstrates that much of the diurnal flow is nontidal. We compute simple proxies of near‐surface vertical structure—the ratio 0 m KE/(0 m KE + 15 m KE) in model outputs, and the ratio undrogued KE/(undrogued KE + drogued KE) in drifter observations. Over most latitudes and frequency bands, model ratios track the drifter ratios to within error bars. Values of this ratio demonstrate significant vertical structure in all frequency bands except the semidiurnal band. Latitudinal dependence in the ratio is greatest in diurnal and low‐frequency bands.more » « less
An official website of the United States government
