skip to main content

Search for: All records

Creators/Authors contains: "Yu, Xiong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 18, 2024
  2. Free, publicly-accessible full text available May 1, 2024
  3. Free, publicly-accessible full text available January 2, 2024
  4. Free, publicly-accessible full text available January 2, 2024
  5. Abstract

    While machine learning has emerged in recent years as a useful tool for the rapid prediction of materials properties, generating sufficient data to reliably train models without overfitting is often impractical. Towards overcoming this limitation, we present a general framework for leveraging complementary information across different models and datasets for accurate prediction of data-scarce materials properties. Our approach, based on a machine learning paradigm called mixture of experts, outperforms pairwise transfer learning on 14 of 19 materials property regression tasks, performing comparably on four of the remaining five. The approach is interpretable, model-agnostic, and scalable to combining an arbitrary number of pre-trained models and datasets to any downstream property prediction task. We anticipate the performance of our framework will further improve as better model architectures, new pre-training tasks, and larger materials datasets are developed by the community.

    more » « less
  6. Free, publicly-accessible full text available December 3, 2023
  7. For real-world graph data, the node class distribution is inherently imbalanced and long-tailed, which naturally leads to a few-shot learning scenario with limited nodes labeled for newly emerging classes. Existing efforts are carefully designed to solve such a few-shot learning problem via data augmentation, learning transferable initialization, to name a few. However, most, if not all, of them are based on a strong assumption that all the test nodes must exclusively come from novel classes, which is impractical in real-world applications. In this paper, we study a broader and more realistic problem named generalized few-shot node classification, where the test samples can be from both novel classes and base classes. Compared with the standard fewshot node classification, this new problem imposes several unique challenges, including asymmetric classification and inconsistent preference. To counter those challenges, we propose a shot-aware graph neural network (STAGER) equipped with an uncertainty-based weight assigner module for adaptive propagation. To formulate this problem from the meta-learning perspective, we propose a new training paradigm named imbalanced episodic training to ensure the label distribution is consistent between the training and test scenarios. Experiment results on four real-world datasets demonstrate the efficacy of our model, with up to 14% accuracy improvement over baselines. 
    more » « less