skip to main content

Search for: All records

Creators/Authors contains: "Yu, Yue"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2024
  2. Free, publicly-accessible full text available April 14, 2024
  3. Free, publicly-accessible full text available April 25, 2024
  4. Free, publicly-accessible full text available January 1, 2024
  5. Free, publicly-accessible full text available January 1, 2024
  6. Free, publicly-accessible full text available January 1, 2024
  7. Free, publicly-accessible full text available January 1, 2024
  8. Abstract

    The interplay between magnetism and electronic band topology enriches topological phases and has promising applications. However, the role of topology in magnetic fluctuations has been elusive. Here, we report evidence for topology stabilized magnetism above the magnetic transition temperature in magnetic Weyl semimetal candidate CeAlGe. Electrical transport, thermal transport, resonant elastic X-ray scattering, and dilatometry consistently indicate the presence of locally correlated magnetism within a narrow temperature window well above the thermodynamic magnetic transition temperature. The wavevector of this short-range order is consistent with the nesting condition of topological Weyl nodes, suggesting that it arises from the interaction between magnetic fluctuations and the emergent Weyl fermions. Effective field theory shows that this topology stabilized order is wavevector dependent and can be stabilized when the interband Weyl fermion scattering is dominant. Our work highlights the role of electronic band topology in stabilizing magnetic order even in the classically disordered regime.

  9. Abstract This work describes cryogenic ex situ lift out (cryo-EXLO) of cryogenic focused ion beam (cryo-FIB) thinned specimens for analysis by cryogenic transmission electron microscopy (cryo-TEM). The steps and apparatus necessary for cryo-EXLO are described. Methods designed to limit ice contamination include use of an anti-frost lid, a vacuum transfer assembly, and a cryostat. Cryo-EXLO is performed in a cryostat with the cryo-shuttle holder positioned in the cryogenic vapor phase above the surface of liquid N2 (LN2) using an EXLO manipulation station installed inside a glove box maintained at < 10% relative humidity and inert (e.g., N2 gas) conditions. Thermal modeling shows that a cryo-EXLO specimen will remain vitreous within its FIB trench indefinitely while LN2 is continuously supplied. Once the LN2 is cut off, modeling shows that the EXLO specimen will remain vitreous for over 4 min, allowing sufficient time for the cryo-transfer steps which take only seconds to perform. Cryo-EXLO was applied successfully to cryo-FIB-milled specimen preparation of a polymer sample and plunge-frozen yeast cells. Cryo-TEM of both the polymer and the yeast shows minimal ice contamination with the yeast specimen maintaining its vitreous phase, illustrating the potential of cryo-EXLO for cryo-FIB-TEM of beam-sensitive, liquid, or biological materials.
    Free, publicly-accessible full text available January 9, 2024
  10. Free, publicly-accessible full text available October 1, 2023