skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yu, Zhanghao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 2, 2025
  2. This paper presents the design, implementation, and experimental evaluation of a wireless biomedical implant platform exploiting the magnetoelectric effect for wireless power and bi-directional communication. As an emerging wireless power transfer method, magnetoelectric is promising for mm-scaled bio-implants because of its superior misalignment sensitivity, high efficiency, and low tissue absorption compared to other modalities [46, 59, 60]. Utilizing the same physical mechanism for power and communication is critical for implant miniaturization, but low-power magnetoelectric uplink communication has not been achieved yet. For the first time, we design and demonstrate near-zero power magnetoelectric backscatter from the mm-sized implants by exploiting the converse magnetostriction effects. The system for demonstration consists of an 8.2-mm3 wireless implantable device and a custom portable transceiver. The implant's ASIC interfacing with the magnetoelectric transducer encodes uplink data by changing the transducer's load, resulting in resonance frequency changes for frequency-shift-keying modulation. The magnetoelectrically backscattered signal is sensed and demodulated through frequency-to-digital conversion by the external transceiver. With design optimizations in data modulation and recovery, the proposed system archives > 1-kbps data rate at the 335-kHz carrier frequency, with a communication distance greater than 2 cm and a bit error rate less than 1E-3. Further, we validate the proposed system for wireless stimulation and sensing, and conducted ex-vivo tests through a 1.5-cm porcine tissue. The proposed magnetoelectric backscatter approach provides a path towards miniaturized wireless bio-implants for advanced biomedical applications like closed-loop neuromodulation. 
    more » « less
  3. null (Ed.)