- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Lin, Shaoting (2)
-
Yu, Zhaohan (2)
-
Bai, Ruobing (1)
-
Boriskina, Svetlana V (1)
-
Huang, Sizhe (1)
-
Liu, Xinyue (1)
-
Rao, Siyuan (1)
-
Scott, Emma (1)
-
Swarnkar, Aditya (1)
-
Usmanova, Zumrat (1)
-
Xu, Duo (1)
-
Ye, Chuwei (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Yu, Zhaohan; Xu, Duo; Usmanova, Zumrat; Ye, Chuwei; Swarnkar, Aditya; Scott, Emma; Huang, Sizhe; Rao, Siyuan; Liu, Xinyue; Boriskina, Svetlana V; et al (, Advanced Science)Elastocaloric polymers, whose performance typically relies on phase transformation between amorphous chains and crystalline domains, offer a promising alternative to traditional refrigeration technologies. While engineering polymer‐network architecture has shown the potential to boost elastocaloric performance, the role of topological defects remains unexplored despite their prevalence in real polymers. This study reports a defect‐engineering approach in end‐linked star polymers (ELSPs) that enables an adiabatic temperature change of up to 8.14 ± 1.76 °C at an ambient temperature above 65 °C, showing an enhancement of 39% compared to ELSPs with negligible defects. This defect‐regulated solid‐state cooling is attributed to two competing effects of dangling‐chain defects on strain‐induced crystallization (SIC) and temperature‐induced crystallization (TIC), synergistically regulating the adiabatic temperature change. Specifically, increasing dangling‐chain defects monotonically lowers ELSPs’ mechanical performance at high temperatures due to suppressed SIC, but nonmonotonically impacts the mechanical performance at low temperatures due to the competition between suppressed SIC and enhanced TIC.more » « lessFree, publicly-accessible full text available December 12, 2026
An official website of the United States government
