Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            ABSTRACT A three‐dimensional convolutional neural network (3D‐CNN) was developed for the analysis of volumetric optical coherence tomography (OCT) images to enhance endoscopic guidance during percutaneous nephrostomy. The model was performance‐benchmarked using a 10‐fold nested cross‐validation procedure and achieved an average test accuracy of 90.57% across a dataset of 10 porcine kidneys. This performance significantly exceeded that of 2D‐CNN models that attained average test accuracies ranging from 85.63% to 88.22% using 1, 10, or 100 radial sections extracted from the 3D OCT volumes. The 3D‐CNN (~12 million parameters) was benchmarked against three state‐of‐the‐art volumetric architectures: the 3D Vision Transformer (3D‐ViT, ~45 million parameters), 3D‐DenseNet121 (~12 million parameters), and the Multi‐plane and Multi‐slice Transformer (M3T, ~29 million parameters). While these models achieved comparable inferencing accuracy, the 3D‐CNN exhibited lower inference latency (33 ms) than 3D‐ViT (86 ms), 3D‐DenseNet121 (58 ms), and M3T (93 ms), representing a critical advantage for real‐time surgical guidance applications. These results demonstrate the 3D‐CNN's capability as a powerful and practical tool for computer‐aided diagnosis in OCT‐guided surgical interventions.more » « lessFree, publicly-accessible full text available July 25, 2026
- 
            Leitgeb, Rainer A; Yasuno, Yoshiaki (Ed.)Free, publicly-accessible full text available March 19, 2026
- 
            Free, publicly-accessible full text available December 1, 2025
- 
            Kidney cancer is a kind of high mortality cancer because of the difficulty in early diagnosis and the high metastatic dissemination in treatments. The surgical resection of tumors is the most effective treatment for renal cancer patients. However, precise assessment of tumor margins is a challenge during surgical resection. The objective of this study is to demonstrate an optical imaging tool in precisely distinguishing kidney tumor borders and identifying tumor zones from normal tissues to assist surgeons in accurately resecting tumors from kidneys during the surgery. 30 samples from six human kidneys were imaged using polarization-sensitive optical coherence tomography (PS-OCT). Cross-sectional, enface, and spatial information of kidney samples were obtained for microenvironment reconstruction. Polarization parameters (phase retardation, optic axis direction, and degree of polarization uniformity (DOPU) and Stokes parameters (Q, U, and V) were utilized for multiparameter analysis. To verify the detection accuracy of PS-OCT, H&E histology staining and dice-coefficient were utilized to quantify the performance of PS-OCT in identifying tumor borders and regions. In this study, tumor borders were clearly identified by PS-OCT imaging, which outperformed the conventional intensity-based OCT. With H&E histological staining as golden standard, PS-OCT precisely identified the tumor regions and tissue distributions at different locations and different depths based on polarization and Stokes parameters. Compared to the traditional attenuation coefficient quantification method, PS-OCT demonstrated enhanced contrast of tissue characteristics between normal and cancerous tissues due to the birefringence effects. Our results demonstrated that PS-OCT was promising to provide imaging guidance for the surgical resection of kidney tumors and had the potential to be used for other human kidney surgeries in clinics such as renal biopsy.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
