skip to main content


Search for: All records

Creators/Authors contains: "Yuan, Chenyang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study the problem of decomposing a polynomial p into a sum of r squares by minimizing a quadratically penalized objective fp(u)=‖‖∑ri=1u2i−p‖‖2. This objective is nonconvex and is equivalent to the rank-r Burer-Monteiro factorization of a semidefinite program (SDP) encoding the sum of squares decomposition. We show that for all univariate polynomials p, if r≥2 then fp(u) has no spurious second-order critical points, showing that all local optima are also global optima. This is in contrast to previous work showing that for general SDPs, in addition to genericity conditions, r has to be roughly the square root of the number of constraints (the degree of p) for there to be no spurious second-order critical points. Our proof uses tools from computational algebraic geometry and can be interpreted as constructing a certificate using the first- and second-order necessary conditions. We also show that by choosing a norm based on sampling equally-spaced points on the circle, the gradient ∇fp can be computed in nearly linear time using fast Fourier transforms. Experimentally we demonstrate that this method has very fast convergence using first-order optimization algorithms such as L-BFGS, with near-linear scaling to million-degree polynomials. 
    more » « less