skip to main content

Search for: All records

Creators/Authors contains: "Yuan, Dao-Fu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The advent of ion traps as cooling devices has revolutionized ion spectroscopy as it is now possible to efficiently cool ions vibrationally and rotationally to levels where truly high-resolution experiments are now feasible. Here, we report the first results of a new experimental apparatus that couples a cryogenic 3D Paul trap with a laser vaporization cluster source for high-resolution photoelectron imaging of cold cluster anions. We have demonstrated the ability of the new apparatus to efficiently cool BiO − and BiO 2 − to minimize vibrational hot bands and allow high-resolution photoelectron images to be obtained. The electron affinities of BiO and BiO 2 are measured accurately for the first time to be 1.492(1) and 3.281(1) eV, respectively. Vibrational frequencies for the ground states of BiO and BiO 2 , as well as those for the anions determined from temperature-dependent studies, are reported.
    Free, publicly-accessible full text available November 7, 2023
  2. Borophenes are atom-thin boron layers that can be grown on coinage metal substrates and have become an important class of synthetic 2D nanomaterials. The interactions between boron and substrates are critical to understand the growth mechanisms of borophenes. Here, we report an investigation of copper-boron interactions in the Cu 2 B 8 − bimetallic cluster using photoelectron spectroscopy and quantum chemical calculations. Well-resolved photoelectron spectra are obtained at several photon energies and are combined with theoretical calculations to elucidate the structures and bonding of Cu 2 B 8 − . Global minimum searches reveal that Cu 2 B 8 − consists of a Cu 2 dimer atop a B 8 molecular wheel with a long Cu–Cu bond length close to that in Cu 2 + . Chemical bonding analyses indicate that there is clear charge transfer from Cu 2 to B 8 , and the Cu 2 B 8 − cluster can be viewed as a [Cu 2 + ]-borozene complex, [Cu 2 + ][B 8 2– ]. In the neutral cluster, no Cu–Cu bond exists and Cu 2 B 8 consists of two Cu + centers interacting with doubly aromatic B 8 2− borozene. The charge transfer interactions betweenmore »Cu and boron in the Cu 2 B 8 − cluster are analogous to charge transfer from the copper substrate to the first borophene layer recently reported to be critical in the growth of bilayer borophenes on a Cu(111) substrate.« less
    Free, publicly-accessible full text available July 1, 2023
  3. Size-selected negatively-charged boron clusters (B n − ) have been found to be planar or quasi-planar in a wide size range. Even though cage structures emerged as the global minimum at B 39 − , the global minimum of B 40 − was in fact planar. Only in the neutral form did the B 40 borospherene become the global minimum. How the structures of larger boron clusters evolve is of immense interest. Here we report the observation of a bilayer B 48 − cluster using photoelectron spectroscopy and first-principles calculations. The photoelectron spectra of B 48 − exhibit two well-resolved features at low binding energies, which are used as electronic signatures to compare with theoretical calculations. Global minimum searches and theoretical calculations indicate that both the B 48 − anion and the B 48 neutral possess a bilayer-type structure with D 2h symmetry. The simulated spectrum of the D 2h B 48 − agrees well with the experimental spectral features, confirming the bilayer global minimum structure. The bilayer B 48 −/0 clusters are found to be highly stable with strong interlayer covalent bonding, revealing a new structural type for size-selected boron clusters. The current study shows the structural diversity ofmore »boron nanoclusters and provides experimental evidence for the viability of bilayer borophenes.« less