skip to main content

Search for: All records

Creators/Authors contains: "Yuan, Y."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. An integrated urban transportation system usually consists of multiple transport modes that have complementary characteristics of capacities, speeds, and costs, facilitating smooth passenger transfers according to planned schedules. However, such an integration is not designed to operate under disruptive events, e.g., a signal failure at a subway station or a breakdown of a bus, which have rippling effects on passenger demand and significantly increase delays. To address these disruptive events, current solutions mainly rely on a substitute service to transport passengers from and to affected areas using adhoc schedules. To fully utilize heterogeneous transportation systems under disruptive events, we designmore »a service called eRoute based on a hierarchical receding horizon control framework to automatically reroute, reschedule, and reallocate multi-mode transportation systems based on real-time and predicted demand and supply. Focusing on an integration of subway and bus, we implement and evaluate eRoute with large datasets including (i) a bus system with 13,000 buses, (ii) a subway system with 127 subway stations, (iii) an automatic fare collection system with a total of 16,840 readers and 8 million card users from a metropolitan city. The data-driven evaluation results show that our solution improves the ratio of served passengers (RSP) by up to 11.5 times and reduces the average traveling time by up to 82.1% compared with existing solutions.« less
  2. Context. Realistic synthetic observations of theoretical source models are essential for our understanding of real observational data. In using synthetic data, one can verify the extent to which source parameters can be recovered and evaluate how various data corruption effects can be calibrated. These studies are the most important when proposing observations of new sources, in the characterization of the capabilities of new or upgraded instruments, and when verifying model-based theoretical predictions in a direct comparison with observational data. Aims. We present the SYnthetic Measurement creator for long Baseline Arrays ( SYMBA ), a novel synthetic data generation pipeline formore »Very Long Baseline Interferometry (VLBI) observations. SYMBA takes into account several realistic atmospheric, instrumental, and calibration effects. Methods. We used SYMBA to create synthetic observations for the Event Horizon Telescope (EHT), a millimetre VLBI array, which has recently captured the first image of a black hole shadow. After testing SYMBA with simple source and corruption models, we study the importance of including all corruption and calibration effects, compared to the addition of thermal noise only. Using synthetic data based on two example general relativistic magnetohydrodynamics (GRMHD) model images of M 87, we performed case studies to assess the image quality that can be obtained with the current and future EHT array for different weather conditions. Results. Our synthetic observations show that the effects of atmospheric and instrumental corruptions on the measured visibilities are significant. Despite these effects, we demonstrate how the overall structure of our GRMHD source models can be recovered robustly with the EHT2017 array after performing calibration steps, which include fringe fitting, a priori amplitude and network calibration, and self-calibration. With the planned addition of new stations to the EHT array in the coming years, images could be reconstructed with higher angular resolution and dynamic range. In our case study, these improvements allowed for a distinction between a thermal and a non-thermal GRMHD model based on salient features in reconstructed images.« less