Zeolitic imidazolate frameworks (ZIFs) feature complex phase transitions, including polymorphism, melting, vitrification, and polyamorphism. Experimentally probing their structural evolution during transitions involving amorphous phases is a significant challenge, especially at the medium-range length scale. To overcome this challenge, here we first train a deep learning-based force field to identify the structural characteristics of both crystalline and non-crystalline ZIF phases. This allows us to reproduce the structural evolution trend during the melting of crystals and formation of ZIF glasses at various length scales with an accuracy comparable to that of ab initio molecular dynamics, yet at a much lower computational cost. Based on this approach, we propose a new structural descriptor, namely, the ring orientation index, to capture the propensity for crystallization of ZIF-4 (Zn(Im)2, Im = C3H3N2−) glasses, as well as for the formation of ZIF-zni (Zn(Im)2) out of the high-density amorphous phase. This crystal formation process is a result of the reorientation of imidazole rings by sacrificing the order of the structure around the zinc-centered tetrahedra. The outcomes of this work are useful for studying phase transitions in other metal-organic frameworks (MOFs) and may thus guide the development of MOF glasses.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT -
Slotte, Tanja (Ed.)Abstract Euphorbia peplus (petty spurge) is a small, fast-growing plant that is native to Eurasia and has become a naturalized weed in North America and Australia. E. peplus is not only medicinally valuable, serving as a source for the skin cancer drug ingenol mebutate, but also has great potential as a model for latex production owing to its small size, ease of manipulation in the laboratory, and rapid reproductive cycle. To help establish E. peplus as a new model, we generated a 267.2 Mb Hi-C-anchored PacBio HiFi nuclear genome assembly with an BUSCO score of 98.5%, a genome annotation based on RNA-seq data from six organs, and publicly accessible tools including a genome browser and an interactive organ-specific expression atlas. Chromosome number is highly variable across Euphorbia species. Using a comparative analysis of our newly sequenced E. peplus genome with other Euphorbiaceae genomes, we show that variation in Euphorbia chromosome number between E. peplus and E. lathyris is likely due to fragmentation and rearrangement rather than chromosomal duplication followed by diploidization of the duplicated sequence. Moreover, we found that the E. peplus genome is relatively compact compared to related members of the genus in part due to restricted expansion of the Ty3 transposon family. Finally, we identify a large gene cluster that contains many previously identified enzymes in the putative ingenol mebutate biosynthesis pathway, along with additional gene candidates for this biosynthetic pathway. The genomic resources we have created for E. peplus will help advance research on latex production and ingenol mebutate biosynthesis in the commercially important Euphorbiaceae family.more » « less
-
Abstract Metal-organic framework glasses feature unique thermal, structural, and chemical properties compared to traditional metallic, organic, and oxide glasses. So far, there is a lack of knowledge of their mechanical properties, especially toughness and strength, owing to the challenge in preparing large bulk glass samples for mechanical testing. However, a recently developed melting method enables fabrication of large bulk glass samples (>25 mm3) from zeolitic imidazolate frameworks. Here, fracture toughness (
K Ic) of a representative glass, namely ZIF-62 glass (Zn(C3H3N2)1.75(C7H5N2)0.25), is measured using single-edge precracked beam method and simulated using reactive molecular dynamics.K Icis determined to be ~0.1 MPa m0.5, which is even lower than that of brittle oxide glasses due to the preferential breakage of the weak coordinative bonds (Zn-N). The glass is found to exhibit an anomalous brittle-to-ductile transition behavior, considering its low fracture surface energy despite similar Poisson’s ratio to that of many ductile metallic and organic glasses. -
The structure of melt-quenched zeolitic imidazole framework (ZIF) glasses can provide insights into their glass-formation mechanism. We directly detected short-range disorder in ZIF glasses using ultrahigh-field zinc-67 solid-state nuclear magnetic resonance spectroscopy. Two distinct Zn sites characteristic of the parent crystals transformed upon melting into a single tetrahedral site with a broad distribution of structural parameters. Moreover, the ligand chemistry in ZIFs appeared to have no controlling effect on the short-range disorder, although the former affected their phase-transition behavior. These findings reveal structure-property relations and could help design metal-organic framework glasses.
-
Abstract Oxide glasses are one of the most important engineering and functional material families owing to their unique features, such as tailorable physical properties. However, at the same time intrinsic brittleness has been their main drawback, which severely restricts many applications. Despite much progress, a breakthrough in developing ultra‐damage‐resistant and ductile oxide glasses still needs to be made. Here, a critical advancement toward such oxide glasses is presented. In detail, a bulk oxide glass with a record‐high crack resistance is obtained by subjecting a caesium aluminoborate glass to surface aging under humid conditions, enabling it to sustain sharp contact deformations under loads of ≈500 N without forming any strength‐limiting cracks. This ultra‐high crack resistance exceeds that of the annealed oxide glasses by more than one order of magnitude, making this glass micro‐ductile. In addition, a remarkable indentation behavior, i.e., a time‐dependent shrinkage of the indent cavity, is demonstrated. Based on structural analyses, a molecular‐scale deformation model to account for both the ultra‐high crack resistance and the time‐dependent shrinkage in the studied glass is proposed.