skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Yue, Zhang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The complex interaction between the Indian Ocean dipole (IOD) and El Niño–Southern Oscillation (ENSO) is further investigated in this study, with a focus on the impacts of the IOD on ENSO in the subsequent year [ENSO(+1)]. The interaction between the IOD and the concurrent ENSO [ENSO(0)] can be summarized as follows: ENSO(0) can trigger and enhance the IOD, while the IOD can enhance ENSO(0) and accelerate its demise. Regarding the impacts of IOD(0) on the subsequent ENSO(+1), it is revealed that the IOD can lead to anomalous SST cooling patterns over the equatorial Pacific after the winter following the IOD, indicating the formation of a La Niña–like pattern in the subsequent year. While the SST cooling tendency associated with a positive IOD is attributable primarily to net heat flux (thermodynamic processes) from autumn to the ensuing spring, after the ensuing spring the dominant contribution comes from oceanic processes (dynamic processes) instead. From autumn to the ensuing spring, the downward shortwave flux response contributes the most to SST cooling over the central and eastern Pacific, due to the cloud–radiation–SST feedback. From the ensuing winter to the ensuing summer, changes in latent heat flux (LHF) are important for SST cooling, indicating that the release of LHF from the ocean into the atmosphere increases due to strong evaporation and leads to SST cooling through the wind–evaporation–SST feedback. The wind stress response and thermocline shoaling verify that local Bjerknes feedback is crucial for the initiation of La Niña in the later stage. 
    more » « less
  2. null (Ed.)
    Abstract Number: 530 Working Group: Aerosol Chemistry Abstract Isoprene is the most abundant non-methane volatile organic compound (VOC) emitted globally. Isomeric isoprene hydroxy hydroperoxides (ISOPOOH), key photooxidation products of isoprene, likely comprise the second most abundant class of peroxides in the atmosphere, following hydrogen peroxide. Studies have shown that hydrogen peroxide plays important roles in the formation of inorganic sulfates in cloud water mimics. However, the potential for ISOPOOH to play a role in sulfate formation in wet aerosol oxidation from reduced sulfur species (such as inorganic sulfite) is not well understood. This study systematically investigates the reaction kinetics and products of ISOPOOH reacting with particle phase inorganic sulfite and discusses implications to the sulfate aerosol budget. In order to examine the reaction kinetics of ISOPOOH with aqueous sulfite, ammonium bisulfite particles were injected into the UNC indoor environmental chamber under dark conditions with 70% RH. After the inorganic sulfite concentrations stabilized, selected concentrations of gas-phase 1,2-ISOPOOH was injected into the chamber to initiate the multiphase reaction. The gas-phase ISOPOOH and particle-phase species were sampled with online instruments, including a chemical ionization mass spectrometer (CIMS), an aerosol chemical speciation monitor (ACSM), and a particle-into-liquid sampler (PILS), and also collected by Teflon filters for offline molecular-level analyses by an ultra-performance liquid chromatography coupled to an electrospray ionization high resolution quadrupole time-of-flight mass spectrometry (UPLC-ESI-HR-QTOFMS). Results show that a significant amount of inorganic sulfite was converted to inorganic sulfate and organosulfates in the particle phase at relatively fast reaction rates, altering the chemical and physical properties of the particles including phase state, pH, reactivity, and composition. Given the high abundance and water solubility of ISOPOOH in the ambient environment, the multiphase reactions examined in our study indicate significant impacts of ISOPOOH on the atmospheric lifecycle of sulfur and the physicochemical properties of ambient particles. Access: 
    more » « less