skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yuh, Madeleine S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Autonomous systems that can assist humans with increasingly complex tasks are becoming ubiquitous. Moreover, it has been established that a human’s decision to rely on such systems is a function of both their trust in the system and their own self-confidence as it relates to executing the task of interest. Given that both under- and over-reliance on automation can pose significant risks to humans, there is motivation for developing autonomous systems that could appropriately calibrate a human’s trust or self-confidence to achieve proper reliance behavior. In this article, a computational model of coupled human trust and self-confidence dynamics is proposed. The dynamics are modeled as a partially observable Markov decision process without a reward function (POMDP/R) that leverages behavioral and self-report data as observations for estimation of these cognitive states. The model is trained and validated using data collected from 340 participants. Analysis of the transition probabilities shows that the proposed model captures the probabilistic relationship between trust, self-confidence, and reliance for all discrete combinations of high and low trust and self-confidence. The use of the proposed model to design an optimal policy to facilitate trust and self-confidence calibration is a goal of future work. 
    more » « less