The Electron-Ion Collider (EIC), a state-of-the-art facility for studying the strong force, is expected to begin commissioning its first experiments in 2028. This is an opportune time for artificial intelligence (AI) to be included from the start at this facility and in all phases that lead up to the experiments. The second annual workshop organized by the AI4EIC working group, which recently took place, centered on exploring all current and prospective application areas of AI for the EIC. This workshop is not only beneficial for the EIC, but also provides valuable insights for the newly established ePIC collaboration at EIC. This paper summarizes the different activities and R&D projects covered across the sessions of the workshop and provides an overview of the goals, approaches and strategies regarding AI/ML in the EIC community, as well as cutting-edge techniques currently studied in other experiments.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Free, publicly-accessible full text available December 1, 2025 -
The single-differential and fully integrated cross sections for quasifree π+π− electroproduction off protons bound in deuterium have been extracted for the first time. The experimental data were collected at Jefferson Laboratory with the CLAS detector. The measurements were performed in the kinematic region of the invariant mass W from 1.3 to 1.825 GeV and the photon virtuality Q2 from 0.4 to 1.0 GeV2. Sufficient experimental statistics allowed for narrow binning in all kinematic variables, while maintaining a small statistical uncertainty. The extracted cross sections were compared with the corresponding cross sections off free protons, which allowed us to obtain an estimate of the contribution from events in which interactions between the final-state hadrons and the spectator neutron took place.more » « lessFree, publicly-accessible full text available June 1, 2025
-
Free, publicly-accessible full text available February 1, 2025
-
Free, publicly-accessible full text available September 1, 2025
-
The double-spin-polarization observable E for γ p → pπ0 has been measured with the CEBAF Large Acceptance Spectrometer (CLAS) at photon beam energies Eγ from 0.367 to 2.173 GeV (corresponding to center-ofmass energies from 1.240 to 2.200 GeV) for pion center-ofmass angles, cos θc.m. π0 , between − 0.86 and 0.82. These new CLAS measurements cover a broader energy range and have smaller uncertainties compared to previous CBELSA data and provide an important independent check on systematics. These measurements are compared to predictions as well as new global fits from The George Washington University, Mainz, and Bonn-Gatchina groups. Their inclusion in multipole analyses will allow us to refine our understanding of the single-pion production contribution to the Gerasimov-Drell- Hearn sum rule and improve the determination of resonance properties, which will be presented in a future publication.more » « less