skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Zagrodnik, Joseph P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Midlatitude cyclones approaching coastal mountain ranges experience flow modifications on a variety of scales including orographic lift, blocking, mountain waves, and valley flows. During the 2015/16 Olympic Mountain Experiment (OLYMPEX), a pair of scanning ground radars observed precipitating clouds as they were modified by these orographically induced flows. The DOW radar, positioned to scan up the windward Quinault Valley, conducted RHI scans during 285 h of precipitation, 80% of which contained reversed, down-valley flow at lower levels. The existence of down-valley flow in the Quinault Valley was found to be well correlated with upstream flow blocking and the large-scale sea level pressure gradient orientated down the valley. Deep down-valley flow occurred in environments with high moist static stability and southerly winds, conditions that are common in prefrontal sectors of midlatitude cyclones in the coastal Pacific Northwest. Finally, a case study of prolonged down-valley flow in a prefrontal storm sector was simulated to investigate whether latent heat absorption (cooling) contributed to the event. Three experiments were conducted: a Control simulation and two simulations where the temperature tendencies from melting and evaporation were separately turned off. Results indicated that evaporative cooling had a stronger impact on the event’s down-valley flow than melting, likely because evaporation occurred within the low-level down-valley flow layer. Through these experiments, we show that evaporation helped prolong down-valley flow for several hours past the time of the event’s warm frontal passage.

    Significance Statement

    This paper analyzes the characteristics of down-valley flow over the windward Quinault Valley on the Olympic Peninsula of Washington State using data from OLYMPEX, with an emphasis on regional pressure differences and blocking metrics. Results demonstrate that the location of precipitation over the Olympic Peninsula is shifted upstream during events with deep down-valley flow, consistent with blocked upstream airflow. A case study of down-valley flow highlights the role of evaporative cooling to prolong the flow reversal.

     
    more » « less
  2. null (Ed.)
    Abstract High-resolution numerical model simulations of six different cases during the 2015/16 Olympic Mountains Experiment (OLYMPEX) are used to examine dynamic and microphysical precipitation processes on both the full barrier-scale and smaller sub-barrier-scale ridges and valleys. The degree to which stratiform precipitation within midlatitude cyclones is modified over the coastal Olympic Mountains range was found to be strongly dependent on the synoptic environment within a cyclone’s prefrontal and warm sectors. In prefrontal sectors, barrier-scale ascent over stably stratified flow resulted in enhanced ice production aloft at the coast and generally upstream of higher terrain. At low levels, stable flow orientated transverse to sub-barrier-scale windward ridges generated small-scale mountain waves, which failed to produce enough cloud water to appreciably enhance precipitation on the scale of the windward ridges. In moist-neutral warm sectors, the upstream side of the barrier exhibited broad ascent oriented along the windward ridges with lesser regions of adjacent downward motion. Significant quantities of cloud water were produced over coastal foothills with further production of cloud water on the lower-windward slopes. Ice production above the melting layer occurred directly over the barrier where the ice particles were further advected downstream by cross-barrier winds and spilled over into the lee. The coastal foothills were found to be essential for the production and maintenance of cloud water upstream of the primary topographic barrier, allowing additional time for hydrometeors to grow to precipitation size by autoconversion and collection before falling out on the lower-windward slopes. 
    more » « less
  3. Abstract

    Radar retrievals of drop size distribution (DSD) parameters are developed and evaluated over the mountainous Olympic Peninsula of Washington State. The observations used to develop retrievals were collected during the 2015/16 Olympic Mountain Experiment (OLYMPEX) and included the NASA S-band dual-polarimetric (NPOL) radar and a collection of second-generation Particle Size and Velocity (PARSIVEL2) disdrometers over the windward slopes of the barrier. Nonlinear and random forest regressions are applied to the PARSIVEL2 data to develop retrievals for median volume diameter, liquid water content, and rain rate. Improvement in DSD retrieval accuracy, defined by the mean error of the retrieval relative to PARSIVEL2 observations, was achieved when using the random forest model when compared with nonlinear regression. Evaluation of disdrometer observations and the retrievals from NPOL indicate that the radar retrievals can accurately reproduce observed DSDs in this region, including the common wintertime regime of small but numerous raindrops that is important there. NPOL retrievals during the OLYMPEX period are further evaluated using two-dimensional video disdrometers (2DVD) and vertically pointing Micro Rain Radars. Results indicate that radar retrievals using random forests may be skillful in capturing DSD characteristics in the lowest portions of the atmosphere.

     
    more » « less